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1. Overview 

 

1.1 Definition of marine debris 

Litter disposal and accumulation in the marine environment is one of the 
fastest-growing threats to the health of the world's oceans (Pham et al., 2014). 
Marine debris, also known as marine litter, has been defined by UNEP (2009) as “any 
persistent, manufactured or processed solid material discarded, disposed of or 
abandoned in the marine and coastal environment”. Marine debris consists of items 
that have been made or used by people and deliberately discarded into the sea or 
rivers or on beaches; brought indirectly to the sea with rivers, sewage, storm water 
or winds; accidentally lost, including material lost at sea in bad weather (fishing gear, 
cargo); or deliberately left by people on beaches and shores (UNEP, 2005). In 1997, 
the United States of America Academy of Sciences estimated the total input of 
marine litter into the oceans, worldwide, at approximately 6.4 million tons per year 
(UNEP, 2005). Jambeck et al (2015) recently calculated that 275 million metric tons 
(MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 
12.7 million MT entering the ocean.  

Marine debris is present in all marine habitats, from densely populated regions to 
remote points far from human activities (UNEP, 2009) from beaches and shallow 
waters to the deep-ocean trenches (Miyake et al. 2011). The density of marine 
debris varies greatly among locations, influenced by anthropogenic activities, 
hydrological and meteorological conditions, geomorphology, entry point, and the 
physical characteristics of debris items. However, a recent study presented data on 
detectable floating plastic accumulation with visual observation in the North Atlantic 
and Caribbean from 1986 to 2008, the highest concentrations (> 200,000 pieces per 
square kilometre) occurred in the convergence zones (Law et al., 2010). Computer 
model simulations, based on data from about 12,000 satellite-tracked floats 
deployed since the early 1990s as part of the Global Ocean Drifter Program (GODP, 
2011), confirm that debris will be subject to transport by ocean currents and will 
tend to accumulate in a limited number of sub-tropical convergence zones or gyres 
(IPRC, 2008; UNEP and NOAA, (2011)) (Figure 1). 
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The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations. 

Figure 1. A model simulation of the distribution of marine litter in the ocean after ten years shows 
plastic converging in the five gyres: the Indian Ocean gyre, the North and South Pacific gyres, and the 
North and South Atlantic gyres. The simulation, derived from a uniform initial distribution and based 
on real drifter movements, shows the influence of the five main gyres over time. Source: IPRC, 2008. 

 

1.2 Types of marine debris 

Marine debris comprises of various material types, and can be classified into several 
distinct categories (ANZECC, 1996; Edyvane et al., 2004; Ribic et al., 1992; Galgani et 
al., 2010): 

(a) Plastics, covering a wide range of synthetic polymeric materials, including 
fishing nets, ropes, buoys and other fisheries-related equipment; consumer goods, 
such as plastic bags, plastic packaging, plastic toys; tampon applicators; nappies; 
smoking-related items, such as cigarette butts, lighters and cigar tips; plastic resin 
pellets; microplastic particles; 

(b) Metal, including drink cans, aerosol cans, foil wrappers and disposable 
barbeques; 

(c) Glass, including bottles, bulbs; 

(d) Processed timber, including pallets, crates and particle boards; 

(e) Paper and cardboard, including cartons, cups and bags; 

(f) Rubber, including tyres, balloons and gloves; 

(g) Clothing and textiles, including shoes, furnishings and towels. 
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1.3 Sources of marine debris 

Marine debris originates from a wide and diverse range of sources. The majority of 
marine debris (approximately 80 per cent) entering the seas and oceans is 
considered to originate from land-based sources (Allsopp, et al., 2006), including 
sewage treatment, combined sewer overflows, people using the coast for recreation 
or shore fishing, shore-based solid waste disposal, inappropriate or illegal dumping 
of domestic and industrial rubbish, poorly managed waste dumps, street litter which 
is washed, blown or discharged into nearby waterways by rain, snowmelt, and wind, 
etc. The remaining can be attributed to maritime transport, industrial exploration 
and offshore oil platforms, fishing and aquaculture (UNEP, 2009) and loss and 
purposeful disposal (e.g. ballast weights made of steel, lead or cement) of scientific 
equipment. 

 

2. Environmental Impacts 

 

The incidence of debris in the marine environment is a cause for concern. It is known 
to be harmful to biota, it presents a hazard to shipping (propeller fouling), it is 
aesthetically detrimental, and it may also have the potential to transport 
contaminants over long distances (STAP, 2011). Marine debris, and in particular the 
accumulation of plastic debris, has been identified as a global problem alongside 
other contemporary key issues, such as climate change, ocean acidification and loss 
of biodiversity (CBD and STAP-GEF, 2012). 

 

2.1 Entanglement and Ingestion 

Marine debris results in entanglement of and ingestion by organisms, and poses a 
direct threat to marine biota. Adverse effects of marine debris have been reported 
for 663 species by reviewing available publications (CBD and STAP-GEF, 2012). Over 
half of these reports documented entanglement in, and ingestion of, marine debris, 
representing almost a 40 per cent increase since a review in 1997, which reported 
247 species (Laist, 1997). Reports revealed that all known species of sea turtles, 
about half of all species of marine mammals, and one-fifth of all species of sea birds 
were affected by entanglement in, or ingestion of, marine debris. Species with the 
greatest number of individuals affected by entanglement or ingestion were the 
Northern fur seal, Callorhinus ursinus, the California sea lion, Zalophus californianus, 
and the seabird Fulmarus glacialis; the most frequently reported species are all 
either birds or marine mammals. About 15 per cent of the species affected through 
entanglement and ingestion are on the IUCN Red List (CBD and STAP-GEF, 2012). 

Abandoned, lost or discarded fishing gear (including monofilament line, nets and 
ropes), as well as ropes, netting and plastic packaging, can be a cause of 
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entanglement for pinnipeds (seals and related genera), cetaceans, turtles, sharks, 
sirenia (dugongs and related genera) and birds (WSPA, 2012). The effects range from 
immediate mortality through drowning to progressive debilitation over a period of 
months or years (Laist, 1997). Pinniped entanglement usually involves plastic 
collar-like debris which is often referred to as “neck collars”, where the plastic forms 
a collar around the neck. The animal cannot remove it and it hampers normal 
feeding or breathing (Allen et al., 2012; Waluda and Staniland, 2013). As the animal 
grows, the collar effectively tightens and cuts into tissues becoming firmly 
embedded in skin, muscle and fat (WSPA, 2012) and may cause death. “Ghost 
fishing” as it is known, can affect many species of fish and invertebrates such as 
crabs, corals and sponges. For example, several dead and moribund Geryon crabs 
were found associated with discarded nets in the deep Mediterranean 
(Ramirez-Llodra et al., 2013). In addition, lost and abandoned traps and the 
associated by-catch are a global issue with annual trap loss rates approaching 90 per 
cent in some fisheries (Al-Masroori et al. 2009; Bilkovic et al. 2012). 

Marine debris can be mistaken for food items and be ingested by a wide variety of 
marine biota (Pham et al., 2014). Many species of seabirds, marine mammals and 
sea turtles have been reported to eat marine debris. Ingestion of sharp debris may 
damage their guts and result in infection, pain or death. Plastic polymer mass may 
irritate the stomach tissue, cause abdominal discomfort, and stimulate the animal to 
feel full and cease eating (Derraik, 2002; Galgani et al., 2010). Two sperm whales 
(Physeter macrocephalus) were found off the coast of northern California in 2008 
with a large amount of fishing gear in their gastrointestinal tracts (Jacobsen et al., 
2010). A total of 141 mesopelagic fishes from 27 species in the North Pacific 
Subtropical Gyre, were dissected to examine whether their stomach contents 
contained plastic particles. The incidence of plastic in fish stomachs was 9.2 per cent 
(Davison and Ash, 2011). The study of planktivorous fish from the North Pacific gyre 
found an average of 2.1 plastic items per fish (Boerger et al., 2010). However, the 
consequences of ingestion are not fully understood, because effects associated with 
ingestion can mostly be determined by necropsy (CBD and STAP-GEF, 2012; Hong et 
al., 2013).  

 

2.2 Transport of chemicals 

Plastics have a wide variety of chemicals, including those from manufacturing and 
those that accumulate from the marine environment (i.e. ambient seawater).  

Plastics contain a wide variety of potentially toxic chemicals incorporated during 
manufacture which could be released into the environment (Lithner et al, 2011). 
Research has established that chemicals used in some plastics, such as phthalates 
and flame retardants, can have toxicological effects on fish, mammals and molluscs 
(STAP, 2011). Experimental studies show that phthalates and bisphenol-A (BPA) 
affect reproduction in all the species studied, impairing development in crustaceans 
and amphibians, and generally inducing genetic aberrations (Teuten et al., 2009). 
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There is recent evidence that large concentrations of microplastic and additives can 
harm ecophysiological functions performed by organisms (Browne et al., 2013; 
Wright et al., 2013).  

Because of their small size, microplastics (<1 mm) have a large ratio of surface area 
to volume that promotes adsorption of chemical contaminants to their surface, and 
therefore have a high capacity to facilitate the transport of contaminants. An 
estimated amount of about 35,000 tons, of microplastics are floating in the world’s 
oceans (Cozar et al. 2014; Eriksen et al. 2014). Boerger et al. (2010) found that 35 per 
cent of the fish sampled in the North Pacific central gyre revealed microplastics in 
the gut. A range of marine biota are reported to have ingested microplastics, 
including zooplankton (Cole et al., 2013), amphipods, lugworms and barnacles 
(Thompson et al., 2004), mussels (Browne et al., 2008), decapod crustaceans 
(Murray and Cowie, 2011), fish (Boerger et al., 2010; Rochman et al., 2013) and 
seabirds (Tanaka et al., 2013; van Franeker, 2011). Ingestion of microplastics has 
caused more and more concern in recent years, as it can provide a pathway for 
long-distant transport and bioaccumulation of contaminants, and may be 
compounded by plastic microbead additives in many personal care products (Fendall 
and Sewell 2009, Kershaw and Leslie 2012). 

Plastic debris can accumulate persistent, bio-accumulative and toxic substances 
(PBTs) that are present in the oceans from other sources, such as PCBs, PAHs, DDTs 
and HCHs (Mato et al., 2001; Ogata et al., 2009). Within a few weeks these 
substances can become concentrated on the surface of or in plastic debris by orders 
of magnitude more than in the surrounding water column (Mato et al., 2001; Teuten 
et al., 2009; Hirai et al., 2011; Rios et al., 2010). Japanese medaka (Oryzias latipes) 
exposed to a mixture of polyethylene with chemical pollutants absorbed from the 
marine environment, bioaccumulate these chemical pollutants and suffer liver 
toxicity and pathology (Rochman et al., 2013). Plastics may provide a mechanism to 
facilitate the transport of chemicals to remote, pristine locations where they are 
ingested by biota (Teuten et al., 2007; Hirai et al.,2011). However, it is not yet clear 
whether chemicals accumulated on plastic debris are effectively transferred to 
marine biota (Gouin et al., 2011; Koelmans et al., 2013a and b). 

 

2.3 Habitat Destruction 

Marine debris can cause destruction of habitats in a number of ways, including 
smothering, entanglement, and abrasion. The extent of the impact depends on the 
nature of the debris (i.e., size, quantity, composition, persistence) and the 
susceptibility of the affected environment (i.e., habitat vulnerability and resilience).  

In spite of the growing number of studies documenting the distribution and 
abundance of marine debris, the ecological impacts, including effects on habitats, 
are not well documented (NRC, 2009). The few studies that do exist looked at the 
impacts of derelict fishing gear (that is, gear that has been abandoned, lost or 
discarded) on coral reefs and other structurally complex benthic communities (Bauer 
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et al., 2008). For example, in the Florida Keys, USA, Chiappone et al. (2005) found 
that 87 per cent of all debris was recreational hook-and-line fishing gear, but 
because of low debris density, less than 0.2 per cent of the sessile species were 
affected. However, Lewis et al. (2009) noted that lost lobster traps, upwards of 
100,000 of which are lost each year, represent a significant threat to seagrass beds 
and coral reefs in the Florida Keys, especially during storms. Also, when gear and 
other marine debris wash up on shore, especially during storms, they can cause 
shoreline destruction and smother the underlying substrate where the debris comes 
to rest. 

Although studies of the effects of marine debris on habitat have focused mainly on 
benthic environments, the presence of floating debris can similarly undermine the 
quality of pelagic habitats by: (i) affecting the mobility of species, either through 
entanglement or ghost fishing (that is, entangling fish in lost, abandoned or 
discarded fishing nets, traps or pots); (ii) reducing the quality of food available in the 
environment through accidental ingestion of the debris, which may have 
accumulated toxins on its surface and interfere with digestion and excretion; and (iii) 
altering the behaviour and fitness of species, as in the case of debris acting as a 
fish-aggregating device (Hallier and Gaertner, 2008; Hammer et al., 2012; NRC, 
2009).  

Abandoned and derelict vessels are a widespread problem for the marine 
environment. Besides the fact that sunken, stranded, and decrepit vessels can be an 
eyesore and become hazards to navigation, these vessels can pose significant threats 
to natural resources. They can physically destroy sensitive marine and coastal 
habitats, sink or move during coastal storms, disperse oil and toxic chemicals still on 
board, become a source of marine debris, and spread derelict nets and fishing gear 
that entangle and endanger marine life.1  

 

2.4 Introduction and Spread of Alien Species 

Marine debris can serve as a vector for numerous species. Hence, floating debris can 
potentially transport and introduce species to new environments (Barnes, 2002; 
Winston et al., 1997). Donohue et al. (2001) recorded 13 invertebrate and 10 
vertebrate species living on or within a tangle of debris comprising mostly derelict 
fishing gear in the Northwestern Hawaiian Islands. Similarly, Barnes and Fraser (2003) 
documented 10 species from 5 different phyla on a single plastic packing band 
floating in the Southern Ocean. Although none of the species documented in these 
studies were non-native, the results nonetheless point to the potential for marine 
debris to serve as vectors for alien species. 

To date, the establishment of an alien species via marine debris has yet to be 
documented (Lewis et al., 2005; Barnes, 2002; Barnes and Milner, 2005; Masó et al., 

1 (http://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/abandoned-and-derelict-vess
els.html). 
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2003). The absence of such evidence probably reflects the paucity of research rather 
than the unlikelihood of such events. However, examples of non-native species 
arriving in new habitat have been well documented. For example, a 180-ton 
concrete dock cast adrift from Misawa, Japan, by the March 2011 tsunami was 
carried across the Pacific where it washed ashore in Oregon in the United States in 
June 2012 carrying at least 90 Japanese species including 6 species of non-native 
algae, crustaceans, and molluscs known to be invasive species in other parts of the 
world (Lam et al., 2013; Portland State University 2012). Removal of the dock and its 
burden of non-native species cost 85,000 United States dollars (Barnea et al., 2014). 

A recent study by Goldstein et al. (2013) hints at the possibility of marine debris 
contributing to habitat expansion for the sea skater Halobates sericeus (of the 
Hemiptera order). They showed that abundance of H. sericeus was related to the 
availability of floating marine debris, and that such debris was used by the sea skater 
to attach its egg masses. This suggests that, in principle, H. sericeus and similar 
species could spread across ocean basins with the aid of marine debris. 

Because marine debris is subject to surface and deep-water currents, the geographic 
spread of alien species by such debris is not expected to be random. For instance, 
the North Pacific convergence zone, which tends to concentrate marine debris, 
regularly occurs around the north-western Hawaiian Islands. Thus, the islands are 
subject to unusually high loads of marine debris, and perhaps associated invasive 
species. 

Marine debris can also support the growth and transport of microbes (e.g., 
cyanobacteria, fungi, algae) to new habitats (Masó et al., 2003; Thiel and Gutow, 
2005a and b; Zettler et al., 2013). Masó et al. (2003) found dinoflagellates, including 
those responsible for harmful algal blooms, growing on plastic debris, and raised the 
possibility that the increase in harmful algal blooms may be facilitated by the 
increasing abundance of marine debris. 

 

2.5 Socioeconomics Impacts 

The socioeconomic impacts of marine debris are a difficult problem to quantify, 
because many pollution problems and biological and environmental effects have 
taken a long time to identify and quantify, partly because of the diverse sources (lack 
of awareness, inadequate waste management, etc.), and because data on 
volume/mass, occurrence and distribution are seldom recorded. Furthermore, the 
literature is sparse for economic analyses addressing elements of potential effects. 
The Kommunenes Internasjonale Miljøorganisasjon (KIMO) studies (Hall, 2000; 
Mouat et al., 2010) are the most thorough, but inconsistencies, missing data, and 
absence of detail have been noted. In such cases, verifiable data were used for point 
estimates using a Benefits Transfer Approach (Ofiara and Brown, 1999; Unsworth 
and Petersen, 1995). 
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2.6 Impacts on Beach Communities, Beach Use, Coastal Tourism 

2.6.1 Beach cleaning 

Several references in the literature cite anecdotal information related to costs of 
beach cleaning. NRC (1995) reports the 1993 cost of beach cleaning at Virginia Beach, 
VA, United States of America, was 43,646 euros per km/yr (60,724 United States 
dollars per km/yr) and for Atlantic City, NJ, United States, was 215,225 euros per 
km/yr (299,439 US dollars per km/yr) (2011 Euro values given in parentheses; for all 
the conversions see Appendix). OSPAR Commission (2009) reports this cost for 2004 
for the coast of the United Kingdom at 14 million British pounds per year (19.7 
million euros per yr), for the Skagerrak coast, Sweden at 5.1 million euros per year 
(1.87 million euros per yr) for 2006, and Naturvardsverket (2009) reports the cost of 
cleaning marine debris on five beaches and in two ports in Poland for 2009 at 
570,000 euros per year (632,120 euros per yr). Lane et al., 2007, estimated it would 
cost 286 million dollars per year to remove debris from the wastewater stream in 
South Africa (311 million dollars per year, 224 million euros per year -2011 values). A 
recent study by the Natural Resources Defense Council (NRDC) reports beach 
cleaning costs and waterway debris removal for 43 communities from South San 
Francisco to San Diego, California, as 10,993,010 dollars spent (Stickel et al., 2013). 

2.6.2 Damage to beach use  

Studies in the United States examined damage to beach use from marine debris and 
medical waste (see Appendix). A major wash-up of marine debris on the shore in 
1976 closed New York beaches and caused 15-25 million dollars in lost revenues 
(43-71 million euros, 59-99 million dollars, in 2011 values; Swanson et al., 1978). ERA 
(1979) found that clean beaches in an adjacent state suffered piggyback effects from 
the 1976 event; the public avoided going to an “open-clean” beach in an adjacent 
state (Seaside Heights, New Jersey, United States) as if it too had marine debris and 
was closed, an example of avoidance behaviour resulting in lost revenues (943,638 
euros per year, 2011 values). Extensive pollution and medical waste wash-ups 
occurred in 1987-1988 on New Jersey and New York beaches, with losses estimated 
at of 201-749 million euros at 2011 values for marine debris and medical waste; an 
average of 475 million euros (Ofiara and Brown, 1989 and 1999; Kahn et al., 1989; 
Swanson et. al., 1991) in 2011 values. 

2.6.3 Losses to tourism  

Ofiara and Brown (1989, 1999) found that marine debris wash-ups in New Jersey, 
United States, decreased beach attendance by 8.9 per cent -18.7 per cent in 1987 
and by 7.9 to 32.9 per cent in 1988 (Appendix). A study in South Africa found that a 
decrease in beach cleanliness could decrease tourism spending by up to 52 per cent 
(Balance et al., 2000). In Sweden, research found that marine debris on beaches 
reduced tourism by between one and five per cent (OSPAR, 2009). Hence, even a 
limited presence of marine debris can decrease coastal tourism by between one to 
five per cent, and severe events can decrease beach visits by 8.4 per cent to 25.8 per 
cent (averaged limits). 
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2.7 Impacts on Commercial Fishing 

The Marine Pollution Monitoring Management Group (MPMMG, 2002) reported the 
cost of marine debris removal in the United Kingdom fisheries at 33 million euros, 
and Watson and Bryson (Macfayden, 2009) reported a cost for one trap fisherman in 
the Scottish Clyde fishery of 21,000 dollars in lost gear and 38,000 dollars in lost time. 
Without more information, it is hard to give these estimates their proper context. 
Studies for the Kommunenes Internasjonale Miljøorganisasjon (KIMO) have 
estimated average losses per vessel from marine debris as follows: cleaning marine 
debris from nets GBP 4,065 or Euro 12,007; contaminated catch GBP 1,686 or Euro 
2,183, snagged nets GBP 3,392 or Euro 3,820; fouled propellers Euro 182 euros (Hall, 
2000; Mouat et al., 2010 - Appendix; GBP at 1998 values, Euro at 2008 values). 

A recent study that examined blue crab ghost fishing from lost/abandoned 
traps/pots found an average mortality rate of 18 crabs/trap/year were harvested in 
Virginia-Chesapeake Bay, United States waters (sampled in the winter) (Bilkovic et al. 
2014), compared to earlier mortality rate estimates of 20 crabs/trap/year in 
Maryland-Chesapeake Bay waters (Giordano et al. 2011), and 26 crabs/trap/year in 
Gulf of Mexico waters (Guillory, 1993). An earlier study examined ghost fishing catch 
rates during the crabbing season of 50 crabs/trap/year (live catch rate-capture rate) 
in Virginia-Chesapeake Bay waters (Havens et al. 2006). Bilkovic et al. (2014) further 
estimated an overall loss of 900,000 crabs or 300,000 United States dollars for 
Virginia-Chesapeake Bay, United States waters. 

Impacts of lesser magnitude are summarized in Table 1. 

Table 1. Summary of impacts of lesser magnitude, point estimates 

Ghost Fishing:    

Brown et al. (2005)  Cantabrian Sea, Spain 1.46% loss-landings Monkfishery 

NRC (2008) Not Available up to 5% EU landings  

Allsopp et al. (2006) United States $250mill/yr loss-landings Lobster fishery 

Macfayden et al. (2009) Louisiana, United States 4-10mill. Crabs/yr lost Blue Crab fishery 

Hall (2000)  United Kingdom Avg. Cost cleanup = £L2355/hbr  

Mouat et al. (2010) United Kingdom Avg. Cost cleanup = €8034/hbr-harbours, 

€9492/hbr-marinas; €8253.hbr-composite 

 

Hall (2000) Shetland Is. Livestock 

crofts, United Kingdom 

96% reported marine debris caught in fences, 

36% reported animals entangled, 20% reported 

animals ill 

 

Mouat et al. (2010) Shetland Is. Livestock 

crofts, United Kingdom 

71% reported marine debris caught in fences, 

42% reported animals entangled or ill 

 

Hall (2000) United Kingdom 11% reported cleanup costs of €20,199/yr, rest 

€0 
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Table 2. Summary - Projections (2011 values) 

Beach Cleaning Costs (KIMO, 

2000,2009) 

United 

Kingdom 

€14.301mill/yr - €14.487mill/yr (avg. €14.394mill/yr) 

Damage to Beach Use (S-O), New York, New 

Jersey, United 

States 

All causes: €1,403mill - €5,236mill (avg. €3,319mill) 

MD, Medical Waste: €201mill - €749mill (avg. €475mill) 

Commercial Fishing (KIMO, 

2000,2009), 

United 

Kingdom 

€8.308mill/yr - €8.935mill/yr    (avg. €8.6215mill/yr) 

Aquaculture (KIMO, 2000,2009), United 

Kingdom 

€94,338/yr 

Harbors, Marinas (KIMO, 

2000,2009), 

United 

Kingdom 

€491,641 - €944,510/yr   (avg. €718,076/yr) 

Damages to Vessels (S-O), New York  

Harbour, 

United States 

€749mill 

Coastal Agriculture (KIMO, 

2000,2009), 

United 

Kingdom 

€486,270 - €614,461/yr   (avg. €550,366/yr) 

Note: KIMO (2000, 2009) = Hall (2000), Mouat et al. (2010), S-O = Swanson et al., 1991, Ofiara and 
Brown, 1999, NA: not available. 

 

2.8 Impacts from Invasive Species 

The literature pertaining to economic impacts of invasive species is silent regarding 
marine debris, but it does contain some evidence about the dimensions of the 
impacts from invasive species. The Swedish Naturvardsverket (2009) cites the 
collapse of the anchovy fishery in the Black Sea due to the introduction of the 
American comb jellyfish at an estimated 240 million euros per year. Holt (2009) 
examined control and eradication costs associated with the Carpet sea squirt in 
Holyhead Harbour, Wales, and estimated those costs at 525,000 pounds over a 10-yr 
period (2009-2019); the costs of inaction were estimated at 6.87 million pounds for 
the same 10-yr period.  

 

3. Assessment of the status of marine litter 

 

3.1 Floating Marine Debris 

Floating marine debris in the water column has been documented in the open ocean 
and in coastal waters. Results for densities of floating marine debris in different 
regions of the world’s oceans are shown in Table 3. However, comparisons between 
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studies or even systematic status and trend analyses are challenging because of 
differences in the collection and measurement methodology used. 

 

Table 3 Densities of floating marine debris in different regions 

Location Method Density Reference 

Coastal North Atlantic Ocean 0.333mm mesh net 3537 items/km2, 286.8 kg/km2 Carpenter and Smith, 1972 

North Atlantic Ocean Caribbean 0.947mm mesh net 1.023 g/cm3 Colton et al., 1974 

Northwest Pacific 0.50mm mesh net up to 37.6 items/km2 Day et al., 1990 

North Pacific central gyre 0.333mm mesh net 334,271 items/km2, 5,114 g/km2 Moore et al., 2001 

Southern California’s coastal waters 0.333mm mesh net 7.25 items/m3, 0.02g/m3 Moore et al., 2002 

California Current 0.333mm mesh net 3.29 items/m3, 0.003g/m3 Lattin et al., 2004 

North Pacific Ocean, Kuroshio Current 0.333mm mesh net 174,000 items/km2, 3600 g/km2 Yamashita and Tanimura, 2007 

California Current 0.505mm mesh net 0.011-0.033 items/m3 (Median) Gilfillan et al., 2009 

Caribbean Sea 0.335mm mesh net 1414 ± 112 items/km2 Law et al., 2010 

Gulf of Maine 0.335mm mesh net 1534 ± 200 items/km2 Law et al., 2010 

North Atlantic Subtropical Gyre (near 30°N). 0.335mm mesh net 20,328±2324 items/km2 Law et al., 2010 

Cape Cod, Massachusetts, United States to 

Caribbean Sea 

0.335mm mesh net 0.80~1.24 g/ ml, 0.97~1.04 g/ml Moret-Ferguson et al., 2010 

North Atlantic Ocean 0.335mm mesh net 0.808-1.24 g/ml Moret-Ferguson et al., 2010 

Southeast Bering Sea and United States west 

coast 

0.505mm mesh net 0.004-0.19 items/m3, 

0.014-0.209 mg/m3 

Doyle et al., 2011 

Northeast Pacific Ocean 0.333mm mesh net 

0.202mm mesh net 

Summer 2009: 0.448 items/m2 (Median) 

Fall 2010: 0.021 items/m2 (Median) 

Goldstein et al., 2013 

South Pacific subtropical gyre 0.333mm mesh net Mean: 26,898 items/km2, 70.96 g/km2 Eriksen et al., 2013 

Australia 0.333mm mesh net 4256.4-8966.3 items/km2 Reisser et al., 2013 

Bay of Calvi (Mediterranean-Corsica) 0.2 mm mesh net 6.2 particles/100 m2 Collignon et al., 2014 

South-East Pacific (Chile) visual observations 40ºS and 50ºS : <1 items/km2;  

nearshore waters: >20 items/km2 

Thiel et al., 2003 

Ligurian Sea, north-western Mediterranean visual observations 1997:15-25 items/km2  

2000: 3-1.5 items/km2  

Aliani et al., 2003 

Floating marine debris in fjords, gulfs and 

channels of southern Chile 

visual observations 1- 250 items/km2 Hinojosa and Thiel, 2009 

North East Pacific Ocean visual observations 0-15,222 items/km2 Titmus and Hyrenbach et al., 
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2011 

Northeast Pacific Ocean visual observations 0.0014-0.0032 items/m2 Goldstein et al., 2013 

Straits of Malacca visual observations 578 ± 219 items/m2 Ryan, 2013  

Bay of Bengal visual observations 8.8 ± 1.4 items/m2 Ryan, 2013  

Note: Ship-based trawling surveys and visual observations are used for small and large debris, respectively. 

 

In coastal waters, the type, composition and density of floating debris vary greatly 
among locations. The spatial distribution is influenced by anthropogenic activities, 
hydrographic and geomorphological factors, prevailing winds, and entry point 
(Barnes et al., 2009; Derraik, 2002). Generally, the distribution and composition of 
marine debris floating at sea depends largely on near-shore circulation patterns 
(Aliani et al., 2003; Lattin et al., 2004; Ribic et al., 2010; Thiel et al., 2003). Prevailing 
winds also affect the pattern of debris abundance. Greater quantities of plastics 
were observed at downwind sites (Browne et al., 2010; Collignon et al., 2012). 
Collignon et al. (2014) observed that the density of floating debris was five times 
higher before a strong wind event than afterwards. This was explained by the wind 
stress increasing the mixing and vertical redistribution of the plastic particles in the 
upper layers of the water column. However, most land-based litter is carried by 
water currents through rivers and storm-water (Ryan et al., 2009). The density of the 
debris in the southern California, United States coast water, after the storm was 
seven times higher than prior to the storm (Moore et al., 2002). The weight of plastic 
increased by more than 200 times after a storm in Santa Monica Bay, California, 
United States (Lattin et al., 2004). Higher densities of debris in coastal waters are 
also associated with human population density (Lebreton et al., 2012; Thiel et al., 
2003).  

In the open ocean, spatial patterns of debris are influenced by the interaction of 
large-scale atmospheric and oceanic circulation patterns, leading to particularly high 
accumulations of floating debris in the subtropical gyres (Howell et al., 2012; 
Goldstein et al., 2013; Martinez et al., 2009). A high profile publication in the Science 
journal presented over 20 years of data clearly demonstrating that some of the most 
substantial accumulations of debris are now in oceanic gyres far from land (Law et al., 
2010). The models developed by Martinez et al. (2009) suggest that marine debris 
deposited in coastal zones tends to accumulate in the central oceanic gyres within 
two years after deposition. The persistent floating debris will accumulate in 
mid-ocean sub-tropical gyres, forming so-called garbage patches (Kaiser, 2010; 
Lebreton et al., 2012) (See Figure 1). 

Although the type of litter found in the world's oceans is highly diverse, plastics are 
by far the most abundant material recorded. Plastic debris was first reported in the 
oceans in the early 1970s (Carpenter and Smith, 1972; Colton et al., 1974). Plastics 
are estimated to represent between 60 per cent and 80 per cent of the total marine 
debris (Derraik, 2002; Gregory and Ryan, 1997). Almost all aspects of daily life 
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involve plastics, and consequently the production of plastics has increased 
substantially in the last 60 years and this trend continues. The fragmentation of 
plastics generates microplastics. For example, in sampling the South Pacific 
subtropical gyre, 1.0mm - 4.7mm particles accounted for 55 per cent of the total 
count and 72 per cent of the total weight (Eriksen et al., 2013). Research on the 
amount, distribution, composition and potential impact of microparticles has 
received increasing attention. 

Plastic debris continues to accumulate in the marine environment. Goldstein et al. 
(2013) show that the density of microplastics within the North Pacific Central Gyre 
has increased by two orders of magnitude in the past four decades. In contrast, 
there is no significant trend in the density of surface water plastics in the North 
Atlantic from 1986 to 2008, despite increases in plastic production during this time 
(Law et al., 2010). Some form of loss must be taking place to offset the presumed 
increase in input of plastics to the ocean. Possible sinks for floating plastic debris 
include fragmentation, sedimentation, shore deposition, and ingestion by marine 
organisms (Law et al., 2011). 

 

3.2 Beach debris 

Millions of volunteers in more than 150 countries are involved in beach-cleanup 
activities on International Coastal Cleanup Day every year (Ocean Conservancy, 
2011). The volunteers’ participation contributes to extensive sampling and helps to 
obtain more information from a wider range of sites (Rees and Pond, 1995). The 
density of debris reported from the beaches in different regions of the world is listed 
in Table 4. For most of the beaches, the major debris is plastic. The spatial 
distribution of plastic debris is affected by multiple factors, including land uses, 
human population, fishing activity, and oceanic current systems (Ribic et al., 2010). 

 

Table 4. Density of beach debris in different beaches 

Location Density Reference 

Dominica 1.9-6.2 items/m, 51.5-153.7 g/m Corbin and Singh, 1993 

St. Lucia 4.5-11.2 items/m, 8.2-109.2 g/m Corbin and Singh, 1993 

Panama 3.6 items/m2 (180/50 m2) Garrity and Levings, 1993 

Persian Gulf, United Arab Emirates 0.84 items/ m2 Khordagui and Abu-Hilal, 1994 

Tasmania, Australia 300 items/km, 0.09-0.35 items/m Jones, 1995 

Marmion Marine Park, Australia 2.74 items/m, 0.54 g/m Jones, 1995 

West Australia, Marmion Marine Park, 

Australia 

3.66 items/m, 0.12 g/m Jones, 1995 

Northern New South Wales, Australia 10.9 items/km2 Frost and Cullen, 1997 
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Transkei Coast, South Africa 19.6-72.5 items/m, 42.8-164.1 g/m Madzena and Lasiak, 1997 

Bird Island, South Georgia 0.014-0.21 items/m Walker et al., 1997 

New Jersey, United States 0.36-6.4 items/m Ribic, 1998 

Cliffwood Beach,New Jersey, United 

States 

2.7-3.7 items/m2 Thornton and Jackson, 1998 

Caribbean Sea: Curaçao 60 items/m, 4.5 kg/m Debrot et al., 1999 

Orange County, California, United States 1709 items/m Moore et al., 2001 

Ensenada, Baja California, Mexico 1.525 items/m2 (including natural litter) Silva-Iñiguez and Fischer, 2003 

Japanese beaches 2144 g/100 m2, 341 items/100 m2 Kusui and Noda, 2003 

Russian beaches 1344 g/100 m2, 20.7 items/100 m2  Kusui and Noda, 2003 

Volunteer Beach, Playa Voluntario, 

Falkland Islands (Malvinas) 

accumulation rate:77±25 items/km/month Otley and Ingham, 2003 

Gulf of Aqaba, Red Sea 1.64-7.38 items/m Abu-Hilal and Al-Najjar, 2004 

Gulf of Oman, Oman 1.79 items/m; 27.02g/m Claerboudt , 2004 

Anxious Bay, Australia 1.9-15.0 kg/km Edyvane et al. 2004 

Point Pleasant Park, Halifax Harbour, 

Canada 

accumulation rate: 355±68 items/month Walker et al., 2006 

Rio de Janeiro, Brazil 13.76 items /100 m2 Oigman-Pszczol and Creed, 2007 

NOWPAP region 570 items/100 m2, 3864 g/100 m2 UNEP/NOWPAP, 2008  

Gulf of Aqaba, Red Sea 2.8 items/m2, 0.31 kg/m2 Abu-Hilal and Al-Najjar, 2009 

Chile 1.8 items/m2 Bravo et al., 2009 

OSPAR region 712 items/100m OSPAR Commission, 2009 

Belgium 6429 ± 6767 items/100m Van Cauwenberghe et al., 2013 

Caribbean Sea, Bonaire 115 ± 58 items/m, 3408 ± 1704 g/m (GM) Debrot, et al., 2013 

Chile 27 items/m2 (small plastic) Hidalgo-Ruz and Thiel, 2013 

Mumbai, India 68.83 items/m2, 7.49 g/m2 (Plastic debris) Jayasiri et al., 2013 

Nakdong River Estuary, Republic of  

Korea 

large plastics: 8205(M), 27,606 items/m2(S) ; 

mesoplastics:238 (M), 237 particles/m2(S) 

macroplastics : 0.97(M), 1.03 particles/m2(S) 

Lee et al., 2013 

Monterey Bay, CA, United States 0.03-17.1 items/m2 1±2.1 items/m2 Rosevelt et al., 2013 

Turkish Western Black Sea coast 0.085-5.058 items/m2  Topçu et al., 2013 
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20 beaches, Republic of Korea 480.9 (±267.7) count ⋅ 100 m−1 for number,  

86.5 (±78.6) kg ⋅ 100 m−1 for weight,  

0.48 (±0.38) m3 ⋅ 100 m−1 for volume 

Hong et al., 2013 

GM: geometric mean; M: surveying results in May; S: surveying results in September.  

 

Beach debris density may be linked to the number of tourists and the cleaning 
frequency (Bravo et al., 2009; Kuo and Huang, 2014). For example, beach debris 
densities in central Chile were lower than in northern and southern Chile, which 
could be due to different attitudes of beach users or intensive beach cleaning in 
central regions (Bravo et al., 2009). Rodriguez-Santos et al. (2005) found that the 
quantity of litter depends on beach visitor density. Ocean current patterns, sand 
types, wave action, and wind exposure have further effects on litter abundance. For 
example, in Monterey Bay, California, United States, the seasonal variability in debris 
abundance may be a function of oceanic winds, as well as the possibility that 
seasonal current patterns may drive debris deposition (Rosevelt et al., 2013).  

Although marine debris density is usually associated with population density, a few 
studies contradict this. Ribic et al. (2010) show no trends over several decades in 
beach-debris densities along the Eastern Atlantic seaboard of the United States, 
although large percentage increases in coastal population occurred in the south-east 
Atlantic region and a smaller percentage increase in coastal population occurred in 
the north-east region. 

 

3.3 Benthic marine debris 

The occurrence of litter on the seafloor has been far less investigated than in surface 
waters or on beaches, principally because of the high cost and the technical 
difficulties involved in sampling the seafloor. Nevertheless, a few investigations of 
benthic debris have been recorded, including on the continental shelves, on raised 
seabed features, such as seamounts, ridges and banks, in canyons and in polar 
regions. The surveying methods for the density and composition of benthic marine 
debris include bottom trawling, coring, scuba diving, the use of submersibles, 
snorkelling, manta tows and sonar (Spengler and Costa, 2008) and more recently, 
towed camera systems and remotely operated vehicles (ROVs). 

Abundances of benthic debris range from dozens to more than hundreds of 
thousands items per square kilometre. As more areas of Europe's seafloor are being 
explored, benthic litter is progressively being revealed to be more widespread than 
previously assumed. Pham et al. (2014) reported data on litter distribution and 
density collected during 588 video and trawl surveys across 32 sites in European 
waters (35-4500 m depth). Debris was found to be present in the deepest areas and 
at locations as remote from land as the Charlie-Gibbs Fracture Zone across the 
Mid-Atlantic Ridge. The highest litter density occurred in submarine canyons, 
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reaching an average (± SE) of 9.3±2.9 items ha−1. The lowest density was found on 
continental shelves and on ocean ridges; mean (± SE) litter density of 2.2±0.8 and 
3.9±1.3 items ha−1, respectively. As for most other marine environments studied, 
plastic was the most prevalent litter item found on the seafloor. Woodall et al (2015) 
showed the litter was ubiquitous on deep-sea raised benthic features, such as 
seamounts, banks and ridges, A total of 56 items was found in the Atlantic Ocean 
over a survey area of 11.6 ha, and 31 items in the Indian Ocean over 5.6 ha, with a 
significant difference in the type of litter between areas sampled in the Indian Ocean 
(where the dominant litter type was fishing gear) and sites in the Atlantic Ocean 
(which had mixed refuse). 

Litter from fishing activities (derelict fishing lines and nets) was particularly common 
on seamounts, banks, mounds and ocean ridges. A significant source of benthic 
debris is lost and discarded fishing gear, which is of particular concern due to ghost 
fishing effects that can kill both commercial and non-commercial species. Laist (1996) 
reports annual gear loss rates of about one percent for gillnet fisheries and between 
5 - 30 percent for trap fisheries in United States fisheries. Whereas trap loss rates in 
the American lobster fishery are relatively low (5-10 percent), because the fishery 
involves more than 3 million deployed traps, the lobster fishery alone may account 
for the loss of more than 150,000 traps per year. 

Hydrography, geomorphology, and anthropogenic activities all affect the abundance, 
type, and location of debris reaching the seafloor (Barnes et al., 2009; Galgani et al., 
2000; Schlining et al., 2013). Because they facilitate the transport and deposition of 
debris, submarine canyons act as conduits for debris, transporting it from the coast 
to the deep sea (Ramirez-Llodra et al., 2013; Schlining et al., 2013). Ramirez-Llodra et 
al. (2013) suggest that debris in a canyon mainly originates from coastal areas, that 
plastic debris can be transported easily by canyon-enhanced currents, whereas 
heavy debris is usually discarded from ships. Wei et al. (2012) indicate that the 
debris density was higher in the eastern than that in the western Gulf of Mexico, 
primarily because of shipping lanes, offshore oil- and gas-installation platforms, as 
well as fishing activities. The litter density and diversity were independent of depth 
of water and of distance from land. Galgani et al. (2000) report that only small 
amounts of debris were collected on the continental shelf, mostly in canyons 
descending from the continental slope. Ramirez-Llodra et al. (2013) report 
accumulation of litter with increasing depth, but the mean weight at different depths, 
or between the open slope and canyons, showed no significant variation. Schlining et 
al. (2013) found debris clustered just below the edge of canyon walls or on the 
outside of canyon meanders. Wei et al. (2012) indicated that the total density of 
anthropogenic waste was significantly different between parallel depth transects. 
Woodall et al (2015) concluded that the pattern of accumulation and composition of 
the litter was determined by a complex range of factors both environmental and 
anthropogenic. 
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Table 5. Density of benthic debris in different regions 

Location Method Density Depth range Reference 

Bay of Biscay, France trawl 0.263-4.94 items/ha 0-100m Galgani et al., 1995a 

Northwestern Mediterranean trawl 19.35 items/ha 750m Galgani et al., 1995b 

French Mediterranean coast trawl 0-78 items/ha 100-1600m Galgani et al., 1996 

European coast trawl 0-1010 items /ha <2200m Galgani et al., 2000 

Eastern China Sea and the south 

coast of the Republic of Korea 

trawl 30.6-109.8 kg/km2 — Lee et al., 2006 

Greek Gulfs trawl 72-437 items/km2,  

7-47.4 kg/km2 

— Koutsodendris et al., 2008 

Gulf of Aqaba, Red Sea SCUBA 2.8 items/m2; 0.31 kg/m2 — Abu-Hilal et al., 2009 

submarine canyons and the 

continental shelf off California, 

United States 

submersible 1.7 items/100m 20-365 m Watters et al., 2010 

West coast of the United States trawl 67.1 items/km2 55-1280m Keller et al., 2010 

West coast of Portugal ROV 1100 items/km2 850-7400 m Mordecai et al., 2011 

Eastern Fram Strait west of 

Svalbard 

Image 

observation 

3635-7710 items/km2 2500m Bergmann et al., 2012 

Gulf of Mexico trawl <28.4 items/ha 359-3724m Wei et al., 2012 

Antalya Bay, Eastern 

Mediterranean 

trawl 18.5-2,186 kg/km2, 

115-2,762 items/km2 

200-800m Güven et al., 2013 

Belgium trawl 3125 ± 2830 items/km2 — Van Cauwenberghe et al., 

2013 

Mediterranean Sea trawl 0.02-3264.6 kg/km2 900-2700m Ramirez-Llodra et al., 2013 

Monterey Bay, California, 

United States 

ROV --- 25-3971m Schlining et al., 2013 

Atlantic Ocean, 

Mediterranean Sea and Indian 

Ocean 

Core 

(microplastic) 

1.4-40 pieces/50ml sediment 

13.4±3.5 pieces/50ml sediment;  

1000-3500m Woodall et al,. 2014 

Atlantic Ocean ROV 12.23-0.59 items/ha 200-2800m Woodall et al,. 2015 

Indian Ocean ROV 17.39-0.75 items/ha 1320-1610m Woodall et al,. 2015 

ROV: Remotely Operated Vehicle; SCUBA: Self-Contained Underwater Breathing Apparatus 

 

Debris continuously accumulates on the deep seabed; some research shows a 
significant increasing trend. Watters et al. (2010) reported a significant increase in 
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the amount of litter at some of shelf locations off California, United States, between 
1993 and 2007. The debris density has continued increasing, and has doubled during 
the last decade in the Arctic deep sea (Bergmann and Klages, 2012). The density of 
microplastics in sediments has been increasing along the Belgian coast (Claessens et 
al., 2011). However, some studies did not observe significant temporal increases, for 
example, in litter abundance between 1989 and 2010 in Monterey Canyon, central 
California, United States (Schlining et al., 2013). 

 

4. Prevention and Clean-up of Marine Debris  

 

Numerous policies, global, international, national and local, address various aspects 
of marine debris. Some countries have banned outright the use of certain plastic 
derivative products.  

 

5. Gaps, Needs, Priorities  

 

Marine debris is a complex cultural and multi-sectoral problem that imposes 
tremendous ecological, economic, and social costs around the world. One of the 
substantial barriers to addressing marine debris is the absence of adequate scientific 
research, assessment, and monitoring. There is a gap in scientific research to better 
understand the sources, fates, and impacts of marine debris (NOAA and EPA, 2011; 
NRC, 2008). Scalable, statistically rigorous and, where possible, standardized 
monitoring protocols are needed to monitor changes in conditions as a result of 
efforts to prevent and reduce the impacts of marine debris. Although monitoring of 
marine debris is currently carried out within several countries around the world 
(often on the basis of voluntary efforts by non-governmental organizations), the 
protocols used tend to be very different, preventing comparisons and harmonization 
of data across regions or timescales (NOAA and EPA, 2011; Cheshire et al., 2009). 

There is a gap in information needed to evaluate impacts of marine debris on coastal 
and marine species, habitats, economic health, human health and safety, and social 
values. More information is also needed to understand the status and trends in 
amounts, distribution and types of marine debris. There is also a gap in capacity in 
the form of new technologies and methods to detect and remove accumulations of 
marine debris (NOAA and EPA, 2011), as well as in means of bringing home to the 
public in all countries the significance of marine debris and the important part that 
the public can play in combating it. 

Besides, the ways in which waste management is conducted are often a barrier. This 
is a global problem, but waste is managed on a very local level. Truly biodegradable, 
naturally occurring, biopolymers are becoming more wide spread and commercially 
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available. There is a need to pursue truly biodegradable biopolymer alternatives to 
plastic (Chanprateep, 2010). 
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