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Introduction to the open ocean deep sea  

 

The deep sea comprises the seafloor, water column and biota therein below a 
specified depth contour. There are differences in views among experts and agencies 
regarding the appropriate depth to delineate the “deep sea”.  This chapter uses a 
200 metre depth contour as a starting point, so that the “deep sea” represents 63 
per cent of the Earth’s surface area and about 98.5 per cent of Earth’s habitat 
volume (96.5 per cent of which is pelagic). However, much of the information 
presented in this chapter focuses on biodiversity of waters substantially deeper than 
200 m. Many of the other regional divisions of Chapter 36 include treatments of 
shelf and slope biodiversity in continental-shelf and slope areas deeper than 200 m.  
Moreover Chapters 42 and 45 on cold water corals and vents and seeps, 
respectively, and 51 on canyons, seamounts and other specialized morphological 
habitat types address aspects of areas in greater detail.  The estimates of global 
biodiversity of the deep sea in this chapter do include all biodiversity in waters and 
the seafloor below 200 m.  However, in the other sections of this chapter 
redundancy with the other regional chapters is avoided, so that biodiversity of shelf, 
slope, reef, vents, and specialized habitats is assessed in the respective regional or 
thematic chapters.  

This truly vast deep-sea realm constitutes the largest source of species and 
ecosystem diversity on Earth, with great potential for mineral, energy, and living 
resources (e.g., Koslow, 2007). Despite major technological advances and increased 
deep-sea exploration in the past few decades (Danovaro et al., 2014), a remarkably 
small portion of the deep sea has been investigated in detail (Ramirez-Llodra et al., 
2010), particularly in terms of time-series research (Glover et al., 2010). For the 
pelagic areas much less than 0.0001 per cent of the over 1.3 billion km3 of deep 
water has been studied. The inevitable result is weaker characterization of deep-sea 
biodiversity compared to the shelf, slope and terrestrial realms.  Correspondingly 
this also means that continued scientific and surveying efforts may potentially 
change our current understanding of deep-sea biodiversity. There is strong evidence 
that the richness and diversity of organisms in the deep sea exceeds all other known 
biomes from the metazoan to the microbial realms (Rex and Etter, 2010; Zinger et 
al., 2011) and supports the diverse ecosystem processes and functions necessary for 
the Earth’s natural systems to function (Thurber et al., 2014). Moreover, the 
extensive species, genetic, enzymatic, metabolic, and biogeochemical diversity 
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hosted by the deep ocean also holds the potential for new pharmaceutical and 
industrial applications. With up to millions of estimated deep-sea species (cf. 
Chapter 34; CoML, 2010; Grassle and Maciolek, 1992), although the true number of 
species may be less, (Appeltans et al., 2012, Costello et al., 2013; Mora et al., 2013a), 
it would take many generations to document deep-sea diversity in its entirety. In 
fact, this may not even be possible given the huge taxonomic effort required (Mora 
et al., 2013a) and the rate of species extinctions (Pimm et al., 1995). Nor is it 
necessary to have fully quantified deep-sea biodiversity to commence identification 
of risks and opportunities, and design of programmes for its conservation and 
sustainable use, even if new knowledge is later acquired that enables such 
programmes to be improved. 

Over the years, deep-sea ecologists have posited several theories to explain high 
deep-sea biodiversity; many highlight aspects of habitat heterogeneity and the 
extended time scales at which the deep sea is thought to operate (e.g. Levin and 
Dayton, 2009; Rex and Etter, 2010; Snelgrove and Smith, 2002). Most experts agree 
that the presence of different habitats, along with temporal variation, critically 
support deep-sea diversity; for instance, geomorphological structures such as 
canyons, seamounts (Figure 36F.1; cf. Chapter 51), hydrothermal vents and methane 
seeps (cf. Chapter 45), as well as biotic structures, such as cold-water coral reefs 
(Figure 36F.1; Chapter 42), and whale falls sustain unique assemblages of organisms, 
diversifying the deep-sea species pool (Reed et al., 2013). At the same time, 
however, many deep-sea species are widely distributed (e.g., Havermans et al., 
2013; Ingels et al., 2006; Pawlowski et al., 2007), although new genetic tools already 
suggest many species are less cosmopolitan than was previously thought. Small-scale 
heterogeneity further enhances diversity, through the provision of phytodetrital 
patches, biogenic structures such as sponges and xenophyophores, organic food 
falls, pits, and hillocks, (Buhl-Mortensen et al., 2010). Anthropogenic structures such 
as deep-water oil rigs and shipwrecks harbouring highly diverse faunal assemblages 
reflect deep-sea faunal responses to smaller-scale habitat heterogeneity (Church et 
al., 2009; Taylor et al., 2014; Friedlander et al., 2014).  

Deep-sea ecosystems are crucial for global functioning; e.g., remineralization of 
organic matter in the deep sea regenerates nutrients that help fuel the oceanic 
primary production that accounts for about half of atmospheric oxygen production. 
Whilst coastal and shallow-water processes and functions produce services within 
tangible time scales and local and regional spatial scales, the deep-sea processes and 
ecosystem functions that occur on the scale of microns to meters and time scales up 
to years often translate to useful services only after centuries of integrated activity 
(Thurber et al., 2014). Evidence demonstrates, however, that interannual changes in 
climate can influence deep-sea systems over time scales not fundamentally different 
from terrestrial habitats. Climatically driven changes in sinking particulate organic 
matter can alter deep-sea abundance, community structure, diversity and 
functioning within days to months, depending in part on body size (Ruhl et al., 2008; 
Ruhl and Smith, 2004) along with temperature-driven interannual diversity changes 
(Danovaro et al., 2014).  

Numerous human activities affect deep-sea ecosystems, goods, and services directly 
and indirectly now and will do so increasingly in the future (Glover and Smith, 2003; 
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Mengerink et al., 2014; Ramirez-Llodra et al., 2011). These are addressed in various 
chapters of Parts IV and V of this Assessment, with Chapters 11 (Capture Fisheries), 
21 (Offshore Hydrocarbon Industries), 20 (Land-based Inputs), 23 (Other Mining 
Industries), 25 (Marine debris) and 27 (Tourism) of particular relevance. 

 

Benthic realm 

 

2.1 Deep-sea margins 

The global continental margins extend for ~150,000 km (Jahnke, 2010) and 
encompass estuarine, open coast, shelf, canyon, slope, and enclosed-sea ecosystems 
(Levin and Sibuet, 2012). Deep-sea margins are those areas that lie beyond the shelf 
break, where the seafloor slopes down to the continental rise at abyssal depths, and 
encompasses bathyal depths. Numerous canyons and channels incise the continental 
slope (see Chapter 51), often featuring cold-water coral reefs (Chapter 42) or oxygen 
minimum zones (OMZs) as distinct habitats along the deep margin. Sediment covers 
much of the deep continental margin, but with exposed bedrock in areas where 
topography is too steep for sediment accumulation (e.g., steep canyon walls) or 
where sediment is washed away (e.g., parts of seamounts). Different faunas inhabit 
soft- and hard-bottom substrates. 

Relative to their area, the margins account for a disproportionately large fraction of 
global primary production (10-15 per cent), nutrient recycling, carbon burial (>60 per 
cent of total settling organic carbon), and fisheries production (Muller-Karger et al., 
2005). They are also exceptionally dynamic systems with ecosystem structures that 
can oscillate slowly or shift abruptly, but rarely remain static (Levin et al., 2014). 

1.1.1 Status of and trends for biodiversity  

In the well-studied North Atlantic, local macrofaunal (300 µm-3 cm) species diversity 
on the continental slope exceeds that of the adjacent continental shelf, and 
estimates of bathyal diversity in other parts of the world ocean are comparably high 
(Rex and Etter, 2010), but local environmental conditions drive regional differences: 
e.g., the Gulf of Mexico, the Norwegian and Mediterranean Seas (Narayanaswamy et 
al., 2013), the Eastern. Pacific and the Arabian Sea (Levin et al., 2001). Most 
researchers agree that habitat heterogeneity on different spatial scales drives high 
diversity along the margins (Narayanaswamy et al., 2013) and that margins often 
exhibit upwelling and increased production that enhances biodiversity. Nonetheless, 
excess food availability can reduce diversity. 

Depth-related species diversity gradients in macrofauna often peak unimodally at 
mid-bathyal depths of about 1500-2000 m (Rex and Etter, 2010), although shallower 
peaks in diversity have been observed in Arctic waters (Narayanaswamy et al., 2005; 
2010; Svavarsson, 1997; Yasuhara et al., 2012b) for bivalves, polychaetes, gastropods 
and cumaceans (Rex, 1981), as well as for the entire macrofauna (Etter and 
Mullineaux, 2000; Levin et al., 2001) and some meiofauna (Yasuhara et al., 2012b) 
(32 µm-1000 µm).  Even regions with very low diversity can host highly specialized 
species (e.g., OMZs) and contribute to overall margin diversity (Gooday et al., 2010). 
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Thus, throughout their depth gradient, continental margin slope areas exhibit the 
highest macrofaunal diversity and offer a potentially important refuge against future 
climate change, as mobile organisms could migrate upslope or downslope in search 
of suitable conditions (Rodriguez-Lazaro and Cronin, 1999; Yasuhara et al., 2008; 
2009).  

The diversity of meiofauna (32 µm-1,000 µm) exceeds that of the macrofauna and 
their diversity generally increases with depth; however, groups such as foraminifera 
and ostracods exhibit unimodal peaks in diversity  (Yasuhara et al., 2012b). 
Meiofaunal diversity may decline or increase with increasing bathyal depths 
(Narayanaswamy et al., 2013), generally driven by food availability and intensity and 
regularity of disturbance regimes, as well as by temperature and  local 
environmental conditions (Corliss et al., 2009; Yasuhara et al., 2012a; 2009; 2012b; 
2014). 

Russian and Scandinavian deep-sea expeditions described peak benthic megafaunal 
(>3 cm) diversity at mid-bathyal depths as early as the 1950s and 1960s, despite 
observing much lower megafaunal than meio- and macrofaunal diversity 
(Vinogradova, 1959). Sponges, cnidarians, crustaceans (decapods and isopods) and 
echinoderms (echinoids, asteroids, crinoids, holothurians) all display this pattern; 
however later studies confirmed the pattern for some megafaunal invertebrates, but 
showed a decline or even increase in diversity with increasing depth for some taxa. 
Evidence to date suggests lower species richness in deep-sea bacterial communities 
than in coastal benthic environments, with the caveat that deep-sea environments 
remain underexplored (Zinger et al., 2011).  However, the presence of extreme 
environments in the deep sea which have high phylogenetic diversity promises a rich 
source of bacterial diversity and genetic innovation (Sogin et al., 2006). 

Several faunal groups also exhibit latitudinal gradients in species diversity 
(Narayanaswamy et al., 2010; Rex and Etter, 2010; Yasuhara et al., 2009): diversity of 
crustaceans, molluscs and foraminifera declines poleward (Gage et al., 2004; Rex et 
al., 2000), whilst others such as nematodes respond to phytodetrital input 
(Lambshead et al., 2000). Latitudinal gradients have also been identified in bacteria 
(Fuhrman et al., 2008; Sul et al., 2013) but recent modelling indicates peak bacterial 
richness in temperate areas in winter (Ladau et al., 2013). The effect of seasons on 
macro-ecological patterns in the microbial ocean warrants continued investigation to 
test the mechanisms that underlie latitudinal patterns in different fauna. 

Broad-scale depth and latitudinal patterns in benthic diversity are modified 
regionally by a variety of environmental factors operating at different scales. For 
example, OMZs strongly affect diversity where they impinge on the seafloor. OMZs 
typically occur between 200 m and 1000 m, often at major carbon burial sites along 
the continental margins where high productivity results in high carbon fluxes to the 
seafloor and low oxygen. The organic-rich sediments of these regions often support 
mats of large sulphide-oxidizing bacteria (Thioploca, Beggiatoa, Thiomargarita), and 
high-density, low-diversity metazoan assemblages. Protists are also well represented 
in OMZs such as the Cariaco Basin, where representatives of all major protistan 
clades occur (Edgcomb et al., 2011). Depressed diversity near OMZs centres favours 
taxa that can tolerate hypoxia, such as nematodes (Cook et al., 2000; Levin, 2003) 
and certain annelids and foraminifera (Levin, 2003). Other taxa that cannot tolerate 
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low-oxygen conditions may aggregate at the OMZs fringes where food is often 
abundant. 

1.1.2 Major pressures 

Multiple anthropogenic influences affect deep-sea habitats located close to land 
(e.g., canyons, fjords, upper slopes when continental shelves are very narrow), 
including organic matter loading (see Chapter 20), mine tailings disposal (Kvassnes 
and Iversen, 2013; Kvassnes et al., 2009), litter (Pham et al., 2014), bottom trawling 
(Pusceddu et al., 2014) and overfishing (Clark et al., 2007), enhanced or decreased 
terrestrial input, oil and gas exploitation (Ramirez-Llodra et al., 2011) and, potentially 
in future, deep-sea mining (see Chapter 23). Fishing on margins can also have 
indirect ecological effects at deeper depths (Bailey et al., 2009). These anthropogenic 
influences can modify deep-margin habitats through physical smothering and 
disturbance, sediment resuspension, organic loading, and toxic contamination and 
plume formation, with concomitant losses in biodiversity, declining energy flow back 
to higher trophic levels, and impacts on physiology from exposure to toxic 
compounds (e.g., hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), heavy 
metals) (see Ramirez-Llodra et al., 2011 for review).  

 

2.2 Abyss 

2.2.1 Status and trends for biodiversity 

The abyss (~3-6 km water depth) encompasses the largest area on Earth. Its vast 
areas of seafloor plains and rolling hills are generally covered in fine sediments with 
hard substrates associated with manganese nodules, rock outcrops and topographic 
highs (e.g. seamounts). The absence of in situ primary production in this 
comparatively stable habitat (apart from scant occurrence of chemosynthesis at 
hydrothermal vents and cold seeps; cf. Chapter 45) characterize an ecosystem 
adapted to a limiting and variable rain of particulate detrital material that sinks from 
euphotic zones. Nonetheless, the abyss supports higher levels of alpha and beta 
diversity of meiofauna, macrofauna and megafauna than was recognized only 
decades ago (Rex and Etter, 2010). The prevalence of environmental DNA preserved 
in the deep sea biases estimates of richness, at least in the microbial domain, adding 
a challenge to biodiversity study in the abyss using molecular methods (Pawlowski et 
al., 2011).   

Despite poorly known biodiversity patterns at regional to global scales (especially 
regarding species ranges and connectivity), some regions, such as the abyssal 
Southern Ocean (Brandt et al., 2007; Griffiths, 2010) and the Pacific equatorial abyss, 
are likely to represent major reservoirs of biodiversity (Smith et al., 2008). 

2.2.2 Major pressures  

The food-limited nature of abyssal ecosystems, and reliance on particulate organic 
carbon (POC) flux from above, suggest that all groups, from microbes to megafauna, 
will be highly sensitive to changes in phytoplankton productivity and community 
structure, and especially to changes in the quantity and quality of the export flux 
(Billett et al., 2010; Ruhl et al., 2008; Ruhl and Smith, 2004; Smith et al., 2008; Smith 
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et al.,2013). Climate warming in some broad areas may increase ocean stratification, 
reduce primary production, and shift the dominant phytoplankton community 
structure from diatoms to picoplankton, and reduce export efficiency, driving biotic 
changes over major regions of the abyss, such as the equatorial Pacific (Smith et al., 
2008).  However the effects of climate change, including ocean warming, on 
biodiversity are likely to vary regionally and among species groups in ways that are 
poorly resolved with current models and knowledge of ecosystem dynamics in the 
deep sea. In the future, deep sea mining may also become a pressure on abyssal 
areas of the deep sea, and potential effects are addressed in Chapter 21.  

 

2.3 Hadal  

2.3.1 The Hadal zone 

The Hadal zone, comprising ocean floor deeper than 6000 m, encompasses 
3,437,930 km2, or less than 1 per cent of total ocean area (Harris et al., 2014) and 
represents 45 per cent of its depth and related gradients. Over 80 separate basins or 
depressions in the sea floor comprise the hadal zone, dominated by 7 great trenches 
(>6500 m) around the margins of the Pacific Ocean, five of which extend to over 10 
km depth: the Japan-Kuril-Kamchatka, Kermadec, Tonga, Mariana, and Philippine 
trenches.  The Arctic Ocean and Mediterranean Sea lack hadal depths. These 
trenches are often at the intersection of tectonic plates, exposing them as potential 
epicentres of severe earthquakes which can directly cause local and catastrophic 
disturbance to the trench fauna. 

2.3.2 Status and trends for biodiversity 

Although the hadal zone contains a wide range of macro- and megafaunal taxa  
(cnidarians, polychaetes, bivalves, gastropods, amphipods, decapods, echiurids, 
holothurians, asteroids, echinoids, sipunculids, ophiuroids and fishes (Beliaev, 1989; 
Wolff, 1970), all trenches occur below the Carbonate Compensation Depth (CCD), 
reducing the numbers of calcified protozoan and metazoan species found there 
(Jamieson, 2011). Chemosynthetic seep biota, including vesicomyid and thyasirid 
clams, occur in hadal depths in the Japan Trench; the deepest known methane seeps 
and associated communities are found at 7,434 m in this area (Fujikura et al., 1999; 
Watanabe et al., 2010). Cold seep communities also commonly occur in trench areas, 
such as the Aleutian and Kuril Trenches (Juniper and Sibuet, 1987; Ogawa et al., 
1996; Suess et al., 1998). Benthic foraminifera are among the most widespread taxa 
at hadal depths and include calcareous, large agglutinated, and organic walled 
species (Beliaev, 1989; Gooday et al., 2008). Abundant metazoan meiofaunal taxa, 
such as nematodes, at hadal depths (Gambi et al., 2003; Itoh et al., 2011; Kitahashi 
et al., 2013; Tietjen, 1989; Vanhove et al., 2004) may exceed those found at bathyal 
depths by 10-fold (Danovaro et al., 2002); small numbers of ostracods, halacarids, 
cumaceans, kinorhynchs, and meiofaunal-sized bivalves are also found there 
(Vanhove et al., 2004). Nematode and copepod communities in trenches differ 
greatly from those found at bathyal and abyssal depths (Gambi et al., 2003; Kitahashi 
et al., 2013), driven by opportunistic taxa and meiofaunal dwarfism in trench 
systems (Danovaro et al., 2002; Gambi et al., 2003). 
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Although not yet well quantified, and the mechanisms remain to be discerned, 
higher densities of fauna (Jamieson et al., 2009) and respiration have been found at 
trench axis points than would be expected from a purely vertical rain of POC flux 
(Glud et al., 2013).The exact number of species in trenches is not known, but the few 
quantitative studies made so far suggest that diversity is lower compared to diversity 
at abyssal depths (Grassle, 1989). Reasons for the lower diversity levels are not well 
understood but the high pressure, relatively high food supply and organic matter 
accumulation, relatively elevated temperature (due to adiabatic heating), or a 
combination thereof may attenuate trench diversity. 

Sampling to date suggests that hadal basins are populated by a higher proportion of 
endemic species compared to much shallower waters, species that can survive the 
extreme hydrostatic pressure and, in some instances, remoteness from surface food 
supply (Wolff, 1970). Physiological and other evidence suggests that fishes cannot 
survive at depths greater than 8000 m (Yancey et al., 2014); the deepest hadal fish, 
the liparids (snail-fish), are unique to each trench system. Decapod crustaceans have 
been observed only to 8200 m (Gallo et al., in revision).  

At depths over 8000 m, scavenging amphipod crustaceans dominate the mobile 
megafauna, along with potential predators, including penaeid shrimp, princaxelid 
amphipods and ulmarid jellyfish, as observed in the New Britain Trench and the 
Sirena Deep (Mariana Trench). Comparison of scavenging and epibenthic/demersal 
biota suggests that density, diversity, and incidence of demersal (near bottom) 
lifestyles all increase with greater food supply (Blankenship and Levin, 2007; 
Blankenship et al., 2006). 

Wide separation between trenches in the northern and southern hemispheres and 
between the different oceans has likely facilitated speciation to result in distinct 
assemblages of fauna in each hadal basin (Fujii et al., 2013). Some 75 per cent of the 
species in Pacific Ocean trenches may be endemic to each trench. Despite their 
remoteness from the surface, many hadal trenches are close to land and receive 
organic inputs from terrestrial and coastal sources, yielding higher mega-, macro- 
and meio-faunal densities than expected for greater depths (Danovaro et al., 2003; 
Danovaro et al., 2002; Jamieson, 2011; Jumars and Hessler, 1976; Vanhove et al., 
2004). 

2.3.3 Major pressures 

The proximity of some trenches to land also increases their vulnerability to human 
activity in terms of dumping of materials and effluents, as well as from disaster 
debris, run off from land and pollution from ships. Some of these items, including 
anthropogenic litter, have been observed down to 7,200 m depth (George and 
Higgins, 1979). Evidence for the vulnerability of trench fauna is also provided by the 
levels of the radioisotope 134Cs detected in sediments in the Japan Trench, four 
months after the Fukushima Dai-ichi nuclear disaster (Oguri et al., 2013). 

2.3.4 Knowledge gaps 

Trenches are arguably the most difficult deep-sea environments to access and 
current facilities are very limited worldwide, and consequently knowledge of their 
biodiversity is particularly incomplete. 
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In general, biodiversity patterns of non-nematode meiofauna and non-foraminiferal 
protists are especially poorly known in the deep sea.  

Most information about biodiversity in the deep sea is for the predominant soft-
substrate habitats. However, hard substrates abound in the deep sea in nearly all 
settings, and organisms that cannot be seen in a photograph or video image are hard 
to sample and study quantitatively. Thus knowledge of small-taxon biodiversity is 
best developed for deep-sea sediments.   

Beyond cataloguing diversity, even in those systems we have characterized, almost 
nothing is known about the ranges of species, connectivity patterns or resilience of 
assemblages and their sensitivity to climate stressors or direct human disturbance. 
There is also currently a lack of appropriate tools to adequately evaluate human 
benefits that are derived from the deep sea (Jobstvogt et al., 2014a; 2014b; Thurber 
et al., 2014). 

 

Pelagic realm 

 

3.1 Status and trends for biodiversity 

Between the deep-sea bottom and the sunlit surface waters are the open waters of 
the deep pelagic or “midwater” environment. This huge volume of water is the least 
explored environment on our planet (Webb et al., 2010). The deep pelagic realm is 
very diffuse, with generally low apparent abundances of inhabitants, although recent 
observations from submersibles indicate that some species may concentrate into 
narrow depth bands (Herring, 2002).  

The major physical characteristics structuring the pelagic ecosystems are depth and 
pressure, temperature, and the penetration of sunlight. Below the surface zone (or 
epipelagic, down to about 200 m), the deep layer where sunlight penetrates with 
insufficient intensity to support primary production, is called the mesopelagic zone. 
In some geographic areas, microbial degradation of organic matter sinking from the 
surface zone results in low oxygen concentrations in the mesopelagic, called OMZs 
(Robinson et al., 2010). This mesopelagic zone is a particularly important habitat for 
fauna controlling the depth of CO2 sequestration (Giering et al., 2014).  

Below the depth to which sunlight can penetrate (about 1,000 m) is the largest layer 
of the deep pelagic realm and by far the largest ecosystem on our planet, the 
bathypelagic region. This comprises almost 75 per cent of the volume of the ocean 
and is mostly remote from the influence of the bottom and its communities. 
Temperatures there are usually just a few degrees Celsius above zero. The boundary 
layer where both physical and biological interactions with the bottom occur is called 
‘benthopelagic’.  

The transitions between the various vertical layers are gradients, not fixed surfaces; 
hence ecological distinctions among the zones are somewhat blurred across the 
transitions. Recent surveys have shown a great deal of connectivity between the 
major pelagic depth zones (Sutton, 2013). The abundance and biomass of organisms 
generally varies among these layers from a maximum near the surface, decreasing 
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through the mesopelagic, to very low levels in the bathypelagic, increasing 
somewhat in the benthopelagic (Angel, 1997; Haedrich, 1996). Although abundances 
are low, because such a huge volume of the ocean is bathypelagic, even species that 
are rarely encountered may have very large total population numbers (Herring, 
2002). 

The life cycles of deep-sea animals often involve shifts in vertical distribution among 
developmental stages. Even more spectacular are the daily vertical migrations of 
many mesopelagic species (Benoit-Bird and Au, 2006; Hays, 2003). This vertical 
migration may increase physical mixing of the ocean water and also contributes to a 
"biological pump" that drives the movement of carbon compounds and nutrients 
from the surface waters into the deep ocean (Robinson et al., 2010). 

Sampling the deep pelagic biome shares the logistical difficulties of other deep-sea 
sampling, compounded by the extremely large volume and temporal variability of 
the environment and the widely dispersed populations of its inhabitants. New 
species continue to be discovered regularly. Whereas scientific information on the 
composition of mesopelagic assemblages is rapidly improving, very little is known of 
the structure of the deeper lower bathyal and abyssal pelagic zones. 

Possibly because of high mobility and transport by ocean current, the overall 
diversity of species seems to be less than that found in other ecosystems (Angel, 
1997). However, the number of distinct major evolutionary groups (i.e., phyla, 
classes, etc.) found in the deep pelagic is high.  

Studies of microbes and their roles in the deep pelagic ecosystems are just beginning 
to reveal the great diversity of such organisms. The species richness of deep ocean 
bacteria surpasses that of the surface open ocean (Zinger et al., 2011).  

As is true in other pelagic systems, crustaceans make up a large percentage of the 
deep zooplankton in both abundance and numbers of species. These crustaceans 
include numerous and diverse copepods, amphipods, ostracods and other major 
groups. Some groups, like arrow worms, are almost all pelagic and are important in 
deep waters. Large gelatinous animals, including comb jellies, jellyfishes, colonial 
siphonophores, salps and pyrosomes, are extremely important in deep pelagic 
ecosystems (Robison, 2004).  

The strong swimmers of the deep pelagic, the “nekton”, include many species of 
fishes and some sharks, crustaceans (shrimps, krill, and other shrimplike animals), 
and cephalopods (including squids, “dumbo” and other octopods, and “vampire 
squids”) (Hoving et al., 2014).  In terms of global fish abundance, deep pelagic fishes 
are by far the numerically dominant constituents; the genus Cyclothone alone 
outnumbers all coastal fishes combined and is likely to be the most abundant 
vertebrate on earth. Furthermore, at an estimated ~1,000 million tons, mesopelagic 
fishes dominate the world’s total fish biomass and constitute a major component of 
the global carbon cycle. Acoustic surveys now suggest that an accurate figure of 
mesopelagic fish biomass may be an order of magnitude higher (10,000 - 15,000 
million tons; Irigoien et al., 2014; Kaartvedt et al., 2012; Koslow, 2009). When 
bathypelagic fish biomass is included, deep pelagic fish biomass is likely to be the 
overwhelming majority of fish biomass on Earth (Sutton, 2013). The deep pelagic 
fauna is also important prey for mammals (toothed whales and elephant seals) and 
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even birds (emperor penguins) and reptiles (leatherback sea turtles). The amount of 
deep-sea squids consumed by sperm whales alone annually has been estimated to 
exceed the total landings of fisheries worldwide (Rodhouse and Nigmatullin, 1996). 

Horizontal patterns exist in the global distribution of deep pelagic organisms. 
However, the faunal boundaries of deep pelagic assemblages are less distinct than 
those of near-surface or benthic assemblages (Pierrot-Bults and Angel, 2012). 
Generally, the low-latitude oligotrophic regimes that make up the majority of the 
global ocean house more species than higher-latitude regimes (Hopkins et al., 1996). 
Some major oceanic frontal boundaries, such as the polar and subpolar fronts, 
extend down into deep waters and appear to form biogeographic boundaries, 
although the distinctness of those boundaries may decrease with increasing depth. 

The dark environment also means that production of light by bioluminescence is 
almost universal among deep pelagic organisms. Some animals produce the light 
independently, whereas others are symbiotic with luminescent bacteria. 

 

3.2 Major pressures 

A fundamental biological characteristic throughout the deep pelagic biome is that 
little or no primary production occurs and deep pelagic organisms are dependent on 
food produced elsewhere. Therefore, changes in surface productivity will be 
reflected in changes in the deep midwater. When midwater animals migrate into the 
surface waters at night, they are subjected to predation by near-surface species. 
Shifts in the abundance of those predators will affect the populations of the 
migrators and, indirectly, the deeper species that interact with the vertical migrators 
at their deeper daytime depths. Either or both of these effects may be caused by 
global climate change, fishing pressure and the impact of pollutants in surface 
waters (Robinson et al., 2010; Robison, 2009). 

Climate change will likely increase stratification caused by warming of surface waters 
and expanded OMZs resulting from the interaction of shifts in productivity with 
increased stratification. If the so-called conveyor-belt of global circulation weakens, 
transport of oxygen by the production of deep water will affect the entire deep sea. 
The biomass of mesopelagic fishes in the California Current, for instance, has 
declined dramatically during recent decades of reduced midwater oxygen 
concentrations (Koslow et al., 2011). Furthermore, increases in carbon dioxide 
resulting in acidification may affect diverse deep pelagic animals, including 
pteropods (swimming snails) and crustaceans which use calcium carbonate to build 
their exoskeletons, fishes that need it for internal skeletons, and cephalopods for 
their balance organs. Acidification also changes how oxygen is transported in the 
blood of animals and those living in areas of low oxygen concentration may 
therefore be less capable of survival and reproduction (Rosa and Seibel, 2008). 

Few fisheries currently target deep pelagic species, but fisheries do affect the 
ecosystem. Whaling reduced worldwide populations of sperm whales and pilot 
whales to a small fraction of historical levels (Roman et al., 2014). Similarly, fisheries 
for surface predators such as sharks, tunas and billfishes, and on seamounts, reduce 
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predation pressure, particularly on vertical migrators like squids and lantern fishes 
(Zeidberg and Robison, 2007).  

Increasing extraction of deep-sea hydrocarbon resources increases the likelihood of 
accidental deep release of oil and methane (Mengerink et al., 2014), as well as the 
deep use of dispersants to minimize apparent effects of such spills at the surface 
(See Chapter 21).  

Deep sea mining and some forms of renewable energy production may also affect 
the pelagic realm of the deep ocean (Ramirez-Llodra et al., 2011), and potential 
effects are addressed in Chapters 23 and 22 respectively.  

 

3.3 Knowledge gaps 

Any summary of deep pelagic ecosystems emphasizes how little is known, especially 
relative to coastal systems. Sampling has been intensively conducted in only a few 
geographic areas, using selective methods, each of which illuminates only a fraction 
of the biodiversity. Sampling at lower bathyal or abyssal depths has been limited, 
and virtually nothing is known about pelagic fauna associated with deep trenches. 
There is also limited knowledge of the performance of conservation and 
management measures developed for coastal and shelf marine ecosystems when 
applied in deep ocean systems characterized by large spatial scales and variable but 
sometimes vertically and/or horizontally high-mobility organisms, and incomplete 
knowledge of ecosystem structure and processes.   

 

Special areas typical for the open ocean deep sea  

 

4.1 Ocean ridges  

The Mid-Ocean Ridge system is a continuous single feature on the earth’s surface 
extending ca. 50,000 km around the planet; it defines the axis along which new 
oceanic crust is generated at tectonic plate boundaries (Heezen, 1969). The ridge sea 
floor is elevated above the surrounding abyssal plains, reaching the sea surface at 
mid-ocean islands, such as Iceland, the Azores and Ascension Island in the Atlantic 
Ocean, Easter Island and Galapagos in the Pacific Ocean.   Typically there is a central 
axial rift valley bounded by ridges on both sides. A series of sediment-covered 
terraces slope down on the two sides of the ridge axis to the abyssal plains. The 
global ridge system, including associated island slopes, seamounts and knolls, 
represents a vast area of mid-ocean habitat at bathyal depths, accessible to fauna 
normally associated with narrow strips of suitable habitat on the continental slopes.  
The ocean ridges sub-divide the major ocean basins, but fracture zones at intervals 
permit movement of deep water and abyssal organisms between the two sides of 
the ridge.  

Much attention has been directed to the importance of Mid-Ocean Ridges as sites of 
the hydrothermal vents and their unique fauna found close to the geothermally 
active ridge axis (German et al., 2011). However, the total area of hydrothermal 
vents is small and the dominant fauna on the mid-ocean ridges is made up of typical 
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bathyal species known from adjacent continental margins (See Chapter 45).  The 
biomass of benthic fauna and demersal fishes on the ridges is generally similar to 
that found at corresponding depths on the nearest continental slopes (Priede et al., 
2013). New species, potentially endemic to mid-ocean ridges, have been discovered 
(Priede et al., 2012). But these are likely to be found elsewhere as exploration of the 
deep sea progresses. The island slopes and summits of seamounts associated with 
ocean ridges are important areas for fisheries; evidence suggests that biodiversity, 
including large pelagic predators, is enhanced around such features (Morato et al., 
2010; Morato et al., 2008). Chapter 51 considers the biodiversity of these mid-ocean 
ridges, and its threats, in greater detail.   

 

4.2 Polar deep sea  

Polar marine ecosystems differ in many ways from other marine ecosystems on the 
planet (see Chapters 36G and 36H).  

 

4.3 Arctic  

Arctic deep-sea areas have generally been poorly studied; although several studies 
over the past two decades have greatly advanced our knowledge of its marine 
diversity and deep-sea processes.  They  indicate that the Arctic deep sea is an 
oligotrophic area, featuring steep gradients in benthic biomass with increasing depth 
that are primarily driven by food availability (Bluhm et al., 2005, 2011).  

The Arctic deep basins comprise ~50 per cent of the Arctic Ocean seafloor and differ 
from those of the North Atlantic, as the Arctic Sea is relatively young in age, semi-
isolated from the world’s oceans, and largely ice-covered. Moreover, the high Arctic 
experiences more pronounced seasonality in light, and hence in primary production, 
than lower latitudes.  

The history and semi-isolation of the Arctic basin play a major role in its biodiversity 
patterns (Golikov and Scarlato, 1990). Originally an embayment of the North Pacific, 
the Arctic deep sea was influenced by Pacific fauna until ~80 million years ago, when 
the deep-water connection closed (Marincovich Jr. et al., 1990). Exchange with the 
deep Atlantic began ~40 Ma ago, coinciding with a strong cooling period (Savin et al., 
1975). Although some Arctic shelf and deep-sea fauna were removed by Pleistocene 
glaciations, other shelf fauna in the Atlantic sector of the Arctic found refuge in the 
deep sea and are considered the ancestral fauna at least for some of the recent 
Arctic deep-sea fauna (Nesis, 1984). The bottom of the Arctic basin is filled with 
water originating from the North Atlantic (Rudels et al., 1994); the sediments are 
primarily silt and clay whilst the ridges and plateaus have a higher sand fraction 
(Stein et al., 1994). Exceptions include ice-rafted dropstones, enhancing diversity by 
providing isolated hard substrata and enhanced habitat heterogeneity for benthic 
fauna (Hasemann et al., 2013; Oschmann, 1990). Considerable inputs of refractory 
terrestrial organic matter from the large Russian and North American rivers 
characterize the organic component of sediments along the slopes, and in the basins 
(Stein and Macdonald, 2004). The only present-day deep-water connection to the 
Arctic is via the Fram Strait (~2,500m), providing immigrating species access via the 
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high water flux through this gateway. Submarine ridges within the Arctic form 
physical barriers, but current evidence suggests that these do not form 
biogeographic barriers (Deubel, 2000; Kosobokova et al., 2011; Vinogradova, 1997).  

Bluhm et al. (2011) conservatively estimated the number of benthic invertebrate 
taxa in the Arctic deep sea to be ~1,125. As in other soft-sediment habitats, 
foraminiferans and nematodes generally dominate the meiofauna, whereas 
annelids, crustaceans and bivalves dominate the macrofauna, and echinoderms 
dominate the megafauna. The degree of endemism at the level of both genera and 
species is far lower than in the Antarctic, which has a similarly harsh environment. 
Just over 700 benthic species were catalogued from the central basin a decade ago 
(Sirenko, 2001). The latitudinal species-diversity gradient has been observed in the 
Arctic Ocean (Yasuhara et al., 2012b) and the peak of the unimodal species-diversity 
depth gradient occurs at much shallower depths compared to other oceans (Clarke, 
2003; Svavarsson, 1997; Yasuhara et al., 2012b). 

The Arctic, is populated by species that have experienced selection pressure for 
generalism and high vagility (Jansson and Dynesius, 2002), and should have inherent 
resilience in the face of climate change.  

In a warmer future Arctic with less sea ice altered algal abundance and composition 
will affect zooplankton community structure (Caron and Hutchins, 2012) and 
subsequently the flux of particulate organic matter to the seafloor (Wohlers et al., 
2009), where the changing quantity and quality of this matter will impact benthic 
communities (Jones et al., 2014; Kortsch et al., 2012).  

 

4.4 Antarctic  

The Southern Ocean comprises three major deep ocean basins, i.e., the Pacific, 
Indian and Atlantic Basins, separated by submarine ridges and the Scotia Arc island 
chain.  Oceanographically, the Southern Ocean is a major driver of global ocean 
circulation and plays a vital role in interacting with the deep water circulation in each 
of the major oceans.  

Chapter 36H describes the general dynamics of the Southern Ocean, including 
seasonal changes. The winter sea-ice formation creates cold, dense, salty water that 
sinks to the seafloor and forms very dense Antarctic Bottom Water (Bullister et al., 
2013). This in turn pushes the ocean’s nutrient-rich, deep water closer to the 
surface, generating areas of high primary productivity in Antarctic waters, similar to 
areas of upwelling elsewhere in the world.  

The remote Southern Ocean is home to a diverse and rich community of life that 
thrives in an environment dominated by glaciations and strong currents (Griffiths, 
2010). However, although relatively little is known about the deep-sea fauna, or 
about the complex interactions between the highly seasonally variable physical 
environment and the species that inhabit the Southern Ocean, but our knowledge of 
Southern Ocean deep-sea fauna and biogeography is increasing rapidly (Griffiths, 
2010; Kaiser et al., 2013). The range of ecosystems found in each of the marine 
realms can vary greatly within a small geographic area (e.g. Grange and Smith, 2013), 
or in other cases remain relatively constant across vast areas of the Southern Ocean. 
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The region also contains many completely un-sampled areas for which nothing is 
known (e.g., Amundsen Sea, Western Weddell Sea, Eastern Ross Sea). These areas 
include the majority of the intertidal zone, areas under the floating ice shelves, and 
the greater benthic part of the deep sea. However, several characteristic features of 
Southern Ocean ecosystems include circumpolar distributions and eurybathy of 
many species (Kaiser et al., 2013).  

Both pelagic and benthic communities tend to show a high degree of patchiness in 
both diversity and abundance. The benthic populations show a decrease in biomass 
with increasing depth (Arntz et al., 1994), with notable differences in areas of 
disturbance due to anchor ice and icebergs in the shallows (Smale et al., 2008) and in 
highly productive deep fjord ecosystems (Grange and Smith, 2013). Hard and soft 
sediments from the region are known to be capable of supporting both extremes of 
diversity and biomass. In some cases, levels of biomass are far higher than those in 
equivalent habitats in temperate or tropical regions. A major international study led 
by Brandt revealed comparably high levels of biodiversity (higher than in the Arctic), 
thereby challenging suggestions that deep-sea diversity is depressed in the Southern 
Ocean (Brandt et al., 2007). Understanding of large-scale diversity distributions is 
improving (Brandt and Ebbe, 2009; Kaiser et al., 2013). For example, depth-diversity 
gradients of several taxa are known to be unimodal with a shallow peak comparable 
to those of the Arctic Ocean (Brandt et al., 2007; Brandt and Ebbe, 2009). 

Longline fishing continues in the Southern Ocean, where the Commission for the 
Conservation of Antarctic Marine Living Resources (CCAMLR) has been implementing 
conservation measures for toothfish, icefish and krill fisheries, and has closed almost 
all of the regulatory area to bottom trawling since the 1980s (Reid et al., 2010; 
Hanchet et al., 2015). Climate change, is also a significant potential threat to the 
Antarctic marine communities (Griffiths, 2010; Smith et al., 2012), for reasons similar 
to those presented for the Arctic. 

 

4.5 Seamounts  

Seamounts are important topographic features of the open ocean. Although they are 
small in area relative to the vast expanse of the abyssal plains, accounting for <5 per 
cent of the seafloor (Yesson et al., 2011), three important characteristics distinguish 
them from the surrounding deep-sea habitat (Figure 36F.1; see Chapter 34). First, 
they are “islands” of shallow sea floor, and provide a range of depths for different 
communities. Second, bare rock surfaces can be common, enabling sessile organisms 
to attach to the rock, in contrast to the majority of the ocean sea floor, which is 
covered with fine unconsolidated sediments. Third, the physical structure of some 
seamounts drives the formation of localised hydrographic features and current flows 
that can keep species and production processes concentrated over the seamount, 
even increasing the local deep pelagic biomass.  They are a sufficiently important 
part of marine deep-sea biodiversity that seamounts are fully treated in Chapter 51 
of this Assessment.  

© 2016 United Nations  14 
 



4.6 Organic falls  

The decay of large sources of organic matter (e.g., whales, wood, jellyfish) that ‘fall’ 
from surface or midwater  provide a concentrated source of food on the deep sea 
floor directly, and indirectly through the decay of the organic matter, can yield 
hydrogen sulphide and methane. An array of scavenging species (hagfish, 
amphipods, ophiuroids, and crabs) is adapted to rapidly finding and consuming 
organic matter on the deep seabed.  In addition, lipid-rich whale bones and wood 
support specialized taxa that have evolutionarily adapted to consume the substrate 
via symbionts (Smith and Baco, 2003; Smith et al., 2015).  At least 30 species of 
polychaetes in the genus Osedax colonize and degrade whale bones, with the aid of 
heterotrophic symbionts in the group Oceanspirales (Goffredi et al., 2005; Rouse et 
al., 2009; Smith et al., 2015). Osedax and other taxa colonizing whale falls exhibit 
biogeographic separation, succession during the life of the whale fall (Smith and 
Baco, 2003; Braby et al., 2007; Glover et al., 2005; Smith et al., 2015),  Adipicola and 
other deep-sea mussels also harbour chemoautotrophic endosymbionts and colonize 
sulphide-rich whale remains  (Fujiwara et al., 2007; Thubaut et al., 2013). Similarly, 
members of the bivalve genus Xylophaga colonize and consume wood in the deep 
sea, with symbionts that aid cellulose degradation and nitrogen fixation. The 
activities of these ‘keystone’ species, in conjunction with microbial decay, transform 
the environment and facilitate colonization by a high diversity of other taxa, for 
example  >100 species thus far found only on deep-sea whale falls (Smith et al., 
2015). Human impacts have likely already affected these organic-fall ecosystems. For 
example, 20th century whaling drastically reduced the flux of whale carcasses to the 
deep seafloor (Roman et al., 2014; Smith, 2006; Smith et al., 2015).  

Numerous areas throughout the world’s oceans have experienced large jellyfish 
population expansions. Although numerous studies have sought to identify the 
driving forces behind and the impacts of live jellyfish on marine ecosystems (Purcell, 
2012; Purcell et al., 2007), very few have focused on the environmental 
consequences from the deposition of jellyfish carcasses (from natural die-off events).  
Recently it has become apparent that jellyfish carcasses have very high sinking 
speeds (1,500 m d-1, Lebrato et al., 2013a; 2013b). Thus, jellyfish blooms may affect 
seafloor habitats through the sedimentation of jellyfish carcasses (but also of macro-
zooplankton, see Smith et al. (2014)), the smothering of extensive areas of seafloor 
and reducing oxygen flux into seafloor sediments leading to hypoxic/anoxic 
conditions. Jelly falls may also be actively consumed by typical deep-sea scavengers, 
enhancing food-flux into deep-sea food webs (Sweetman et al., 2014). Jellyfish falls 
have so far been observed in the Atlantic, Indian and Pacific oceans (Billett et al., 
2006; Lebrato and Jones, 2009; Yamamoto et al., 2008; Lebrato et al., 2013a; 2013b; 
Sweetman and Chapman, (2011), and are reviewed in Lebrato et al. (2012).  

 

4.7 Methane seeps 

Continental margins host a vast array of geomorphic environments associated with 
methane seepage and other types of seeps.  Many support assemblages reliant on 
chemosynthesis fuelled by methane and sulphide oxidation (Levin and Sibuet, 2012; 
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Sibuet and Olu, 1998). Their specialized biodiversity features are assessed in Chapter 
45.    

 

Major ecosystem services being affected by the pressures 

 

Despite its apparent remoteness and inhospitability, the deep ocean and seafloor 
play a crucial role in human social and economic wellbeing through the ecosystem 
goods and services they provide (Armstrong et al., 2012; Thurber et al., 2014; van 
den Hove and Moreau, 2007) (Table 1). Whilst some services, such as deep-sea 
fisheries, oil and gas energy resources, potential CO2 storage, and mineral resources 
directly benefit humans, other services support the processes that drive deep-sea 
and global ecosystem functioning. Despite its inaccessibility to most people, the 
deep sea nonetheless supports important cultural and existence values. The deep 
sea acts as a sink for anthropogenic CO2, provides habitat, regenerates nutrients, is a 
site of primary (including chemosynthetic) and secondary biomass production, as 
well as providing other biodiversity-related functions and services, including those 
the deep water and benthic assemblages provide (Irigoien et al., 2014).  

Ocean warming and acidification associated with climate change already affect the 
deep sea, reaching abyssal depths in some areas (Østerhus and Gammelsrød, 1999). 
Ongoing global climatic changes driven by increasing anthropogenic emissions and 
subsequent biogeochemical changes portend further impacts for all ocean areas, 
including the deep-sea and open ocean (Mora et al., 2013b). Data from pre-
anthropocene times indicates millennial-scale climate variability on deep-sea 
biodiversity (Cronin and Raymo, 1997; Cronin et al., 1999; Hunt et al., 2005; 
Wollenburg et al., 2007; Yasuhara and Cronin, 2008; Yasuhara et al., 2012a; 2009), as 
well as decadal-centennial climate events (Yasuhara et al., 2008; 2014). The potential 
impacts of climate change on the ocean are addressed in Part II of the 
Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report, Working 
Group II Chapters 6 and 30.  Consistent with the mandate of this Assessment, they 
are only briefly summarized here.   

Some impacts of climate change will be direct. For example, altered distributions and 
health of open-ocean and deep-sea fisheries are expected to result from warming-
induced latitudinal or depth shifts (Brander, 2010); deoxygenation will induce habitat 
compression (Prince and Goodyear, 2006; Stramma et al., 2012; Koslow et al., 2011); 
and acidification will stress organismal function and thus organismal distribution. 
Climate change-related stressors are also likely to act in concert, and effects could be 
cumulative (Rosa and Seibel, 2008). Shifts in bottom-up, competitive, or top-down 
forcing will produce complex and indirect effects on the services described above.  
Acidification-slowed growth of carbonate skeletons, delayed development under 
hypoxic conditions, and increased respiratory demands with declining food 
availability illustrate how climate change could exacerbate anthropogenic impacts 
and compromise deep-sea ecosystem structure and function and ultimately benefits 
to human welfare. 
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The most important ecosystem service of the deep pelagic region is arguably the 
“biological pump”, in which biological processes, such as the daily vertical migration, 
package and accelerate the transport of carbon compounds, nutrients, and other 
materials out of surface waters and into the deep sea. However, the microbial 
diversity and processes of the deep-pelagic realm are not sufficiently known to 
predict confidently how the biological pump ecosystem service will respond to 
perturbations. 

 

Deep-sea exploitation 

 

6.1 Deep-sea fisheries 

Deep-sea fishing has a long history, but it did not become an important activity until 
the mid-twentieth century, when technological advancement allowed the 
construction of large and powerful vessels, and the development of line and trawl 
gear that could be deployed to continental slope depths. FAO (2009) acknowledges 
that deep-sea fisheries often exploit species which have relatively slower growth 
rates, reach sexual maturity later and reproduce at lower rates than shelf and coastal 
species. 

Deep-sea fish species were the basis of major commercial fisheries in the 1970s to 
early 2000s (Japp and Wilkinson, 2007) but started to decline as aggregations were 
fished out, and realisation grew about the low productivity, and hence low yields, of 
these species (Clark, 2001; Sissenwine and Mace, 2007) and impacts of some of 
these fisheries on seafloor structure and benthos (Clark and Dunn 2012). Globally 
the main commercial deep-sea fish species at present number about 20, comprising 
alfonsino, toothfish, redfish, slickheads, cardinalfish, scabbardfish, armourhead, 
orange roughy, oreos, roundnose and rough-headed grenadiers, blue ling and moras. 
The current commercial catch of these main deep-sea species is about 150,000 tons, 
and has been similar over the last five years, although the proportional species mix 
has changed. The ecosystem effects of these fisheries are discussed in Chapter 11 of 
this Assessment and in Chapter 51 relative to the seamounts which are centres for 
many of these fisheries. 

 

6.2 Deep gas and oil reserves  

The oil and gas industry has been active in the open ocean since the 1970s. Over 
10,000 hydrocarbon wells have been drilled globally; at least 1,000 are routinely 
drilled in water depths >200 m, and as deep as 2,896 m in the Gulf of Mexico. The 
scale of the exploration and development of hydrocarbon reserves and then 
ecosystem effects are discussed in Chapter 21. 

 

6.3 Minerals   

Great interest exists in exploiting the deep sea for its various reserves of minerals, 
which include polymetallic nodules, seafloor massive sulphide (SMS) deposits, 
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mineral-rich sediments and cobalt-rich crusts. Currently no commercial mining 
projects have started, although several projects are in the exploratory or permitting 
phase. From those exploratory studies and related research some knowledge of 
potential ecosystem effects is accumulating.   

Experimental studies to assess the potential impact of mining polymetallic nodules in 
the abyss have indicated that seafloor communities may take many decades before 
showing signs of recovery from disturbance (Bluhm, 2001; Miljutin et al., 2011), and 
may never recover if they rely directly on the nodules for habitat.  

The recovery of communities at active hydrothermal vents where SMS deposits may 
be exploited may be relatively rapid, because vent sites undergo natural 
disturbances which have seen some communities appear to recover from 
catastrophic volcanic activity within a few years (Tunnicliffe et al., 1997). However, 
the rates of recovery of benthic communities are likely to vary among sites.   

Other potential mining activities include exploiting mineral-rich sediments. For 
example in some deep marine sediments, phosphorite occurs as “nodules” (2 to 
>150 mm in diameter), in a mud or sand matrix, which can extend beneath the 
seafloor sediment surface to tens of centimetres depth.  

No mining has yet been authorized for such deposits but could result in the removal 
of large volumes of both the phosphorite nodules and the surrounding soft 
sediments, together with associated faunal communities and generate large 
sediment plumes. In addition, cobalt-rich ferromanganese crusts are promising 
sources of cobalt and rare minerals required to sustain growing human population 
demands and emerging high and green technologies (Hein et al., 2013). Conditions 
favouring their formation are found in abrupt topography, especially on the flanks 
and summits of oceanic seamounts and ridges at depths of 800-2500 m, where the 
most Cobalt-rich deposits are known to concentrate, in habitats dominated by 
suspension-feeding sessile organisms (mostly cold-water corals and sponges) and 
comparatively rich biological communities (Clark, 2013; Clark et al., 2011; 
Fukushima, 2007; Schlacher et al. 2013). Interest in cobalt-rich crust resources is 
growing, although mining for cobalt-rich crusts has not yet started, and technological 
challenges mean it may develop later than for polymetallic nodule or SMS resources. 
Further information on these mining activities is found in Chapter 23, and the 
seamount and seep/vent habitats in Chapters 51 and 45, respectively.   

 

Special conservation/management issues and sustainability for the future 

 

7.1 Special habitats (VMEs, EBSAs, MPAs) and conservation measures 

The United Nations General Assembly has adopted a number of resolutions that 
called for the identification and protection of vulnerable marine ecosystems (VMEs) 
from significant adverse impacts of bottom fishing (for example 61/105 of 2006), 
which has facilitated the development of the 2008 International Guidelines for the 
Management of Deep-Sea Fisheries in the High Seas (FAO, 2009). The concept and 
developments of VMEs and their protection is addressed in Chapter 11. Also in the 
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2000s, in response to the call in the World Summit on Sustainable Development 
(WSSD) for greater protection of the open ocean, the Conference of Parties to the 
Convention on Biological Diversity (CBD) developed and adopted criteria for the 
description of ecologically or biologically significant areas (EBSAs) in open-ocean 
waters and deep-sea habitats.  The application of the EBSA criteria is a scientific and 
technical exercise, and areas that are described as meeting the criteria may receive 
protection through a variety of means, according to the choices of States and 
competent intergovernmental organizations (decision X/29 of the CBD COP10). 
Expert reviews have concluded that both approaches can be complementary in 
achieving effective sustainable management in the deep sea (Rice et al., 2014; Dunn 
et al., 2014).  

 

7.2 Protection of the marine environment in the Area 

With regard to deep-sea mining the International Seabed Authority (ISA), established 
in 1994, is required to take the necessary measures ensure that the marine 
environment is protected from harmful effects from activities in the Area under its 
jurisdiction.  Such measures may include assessing potential environmental impacts 
of deep-sea activities (exploration and possible mining) and setting standards for 
environmental data collection, establishment of environmental baselines, and 
monitoring programmes (ISA, 2000, 2007 2013).  

 

7.3 Deep-ocean observatories-ocean networks   

Deep-sea observatories are becoming increasingly important in monitoring deep-sea 
ecosystems and the environmental changes that will affect them. The first long-term 
and real-time deep-sea observatory was deployed in 1993 at a methane seep site at 
1,174 m depth in Sagami Bay, Japan (JAMSTEC, Japan), and is still operating. Several 
internationally organized projects have been initiated to achieve global integration 
of deep-sea observatories (e.g., Global Ocean Observing System (GOOS, NSF); FixO3 
(Fixed Point Open Ocean Observatories, European Union Framework Programme 7), 
largely based on existing observing networks (e.g., Porcupine Abyssal Plain in the 
North Atlantic, (NOC, UK), Hausgarten Site in the transition between the North 
Atlantic and the Arctic (AWI, Germany), Ocean Network Canada with the Neptune 
Observatory on Canada’s west coast) and aiming at achieving multidisciplinary 
integration, including physics, climate, biogeochemistry, biodiversity and 
ecosystems, geophysics with integration across sectors, and economics and 
sociology. Whilst moving towards a global strategy to obtain maximum efficiency, 
one of the major goals of deep-sea observatory initiatives is to better understand 
and predict the effects of climate change on the linked ocean-atmosphere system, 
and on marine ecosystems, biodiversity and community structure, In terms of 
biodiversity and ecosystems, several objectives need addressing: exploration and 
observation; prediction of future biological resources; understanding the functioning 
of deep-sea ecosystems; and understanding the roles of relationships between 
ecosystems and the services they provide. 
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Figure 1. Deep-sea habitats. Top left: coral garden in the Whittard Canyon, NE Atlantic at approx. 500 
metres depth (2010; image courtesy of Jeroen Ingels); top right: A sea anemone, Boloceroides 
daphneae, on cobalt crust covering a seamount off Hawaii, 1000 metres depth (image courtesy of 
Chris Kelly, HURL); bottom left: An orange roughy (Hoplostethus atlanticus) aggregation at 890 metres 
depth near the summit of a small seamount (termed "Morgue") off the east coast of New Zealand 
(image courtesy of Malcolm Clark); bottom right: A reef-like coverage by stony corals (Solenosmilia 
variabilis) together with  prominent orange brisingid seastars on the summit of a small seamount 
(termed "Ghoul") feature  at 950 metres off the east coast of New Zealand (image courtesy of 
Malcolm Clark).  
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